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1.0 PSAM PROJECT OVEKVIEW

i.I Introduction

This Annual Report summarizes the work completed during the third year of

technical effort on the referenced contract. Principal developments continue

to focus on the Probabilistic Finite Element Method (PFEM) which has been

under development for three years. Essentially all of the linear capabilities

within the PFEM code are in place (Section 2.0); most have been validated

(Section 6.0). Major progress in the application or verification phase has

been achieved for the PFEM and is reported in Section 7.0.

Additionally, the EXPERT" module architecture has been designed and

partially implemented, as reported in Section 4.0. EXPERT is a user interface

module which incorporates an expert system shell for the implementation of a

rule-based interface utilizing the experience and expertise of the user

community. EXPERT has been substantially modified from the Second Annual

Report to incorporate a C-language expert system shell, CLIPS, written at NASA

Johnson Space Center. The use of the C-language allows for an effective

interface to a variety of needed Fortran utility subroutines. These

subroutines perform a variety of operations on data sets used in the input and

control of the PFEM and other modules that form the bulk of the user

interface.

The Fast Probability Integration (FPI) algorithm continues to demonstrate

outstanding performance characteristics for the integration of probability

density functions for multiple variables (Section 3.0). Several minor

enhancements to the algorithm are reported. Additionally, an enhanced Monte

Carlo simulation algorithm has been developed at the University of Arizona

under Professor Wirsching's direction. A variety of numerical strategies were

investigated in the process and are detailed in Appendix C.

1.2 Probabilistic Finite Element Method (PFEM)

The finite element algorithms are broadly classed in terms of the

standard displacement method and as a mixed method with iteration for nodal

equilibrium. Within each method the user has access to a variety of element

types, as developed in the first two years of the contract effort.

During the past year the PSAM project has implemented two new element

types within the PFEM module. The MARC team, under the leadership of Drs. Joop

Nagtegaal, S. Nakazawa, and Mr. Joao Dias, has implemented an advanced

shell/plate element with the ability to handle through-thickness gradients.

The element is an eight-noded solid element with assumed strain freedoms.

Shell/plate behavior has been achieved in terms of a large aspect ratio

capability for the element by the proper selection and tuning of the assumed

strain terms.



The second new element is the sixteen-node hybrid (assumed stress)

element developed under the direction of Dr. Satya Atluri and his staff at the

Georgia Institute of Technology. Again, the element has surface nodes and is

capable of aspect ratios approaching shell/plate requirements.

1.3 Probabilistic Boundary Elements (PBEM)

The focus during the past year has been on the development of a proper

formulation strategy to permit the extension of an existing boundary element

code to the probabilistic context. The selected BEM code for that development

is the BEST3D code developed under NASA HOST funding in an effort directed by

Drs. Banerjee and Wilson; much of that coding was accomplished by Dr.

Raveendra, now working on the PBLM implementation.

The PFEM strategy is to compute structural solutions for perturbed states

of the random variables using an iteration algorithm. In this algorithm, the

perturbed variables are shifted to the right-hand side of the system

equations, and the perturbed solution obtained by iterating with the reduced

stiffness matrix serving as a pre-conditioning matrix.

The PBEM investigation has reviewed the strategies available for the

generation of perturbed solutions. Since the BEM formulation is in te_s of

surface variables, it was at first most natural to think of a direct means of

computing geometry perturbations in analytical rather than numerical terms.

While technically feasible, the analytical approach appears to involve

substantially more cost of implementation than the numerical approach; thus

the latter approach was selected.

The use of BEM formulations for high temperature gradient problems in

turbomachinery requires a treatment of volume terms associated with non-steady

thermal strains, inhomogeneous material properties, and plastic strains. The

usual treatment of these terms is through volume integrals requiring

discretization of the body volume. Recent research in the BLM community has

identified the potential use of surface-based interpolation functions for

these volume integrals. The PBEM formulation has been based on the use of such

surface interpolators. Perturbations are then performed in terms of surface

data, even for internal variables, by this strategy.

1.4 Code Validation and Verification Studies

Code validation and verification are critical elements in the PS_M

effort. Code validation is a task to establish the ability of the integrated

analysis and probabi!istic modules to generate the "exact" solution to simple

problems, amenable to independent analysis. Code verification is to

demonstrate the ability of the PS_M codes to generate meaningful probabilistic



analysis results for each of four SSMEcomponentanalyses. The verification
analyses, therefore, generally involve large modeling problems and loading
conditions that preclude comparison to analytical results.

The validation studies have madesignificant progress in the past year in
terms of the number and diversity of the problems that have been solved. A
standard format for the validation problems has been established that will
facilitate the evaluation and replication of these results by other users.

The validation results have identified code errors and shortcomings that
have been resolved. More importantly, these problems have given significant
insight into the operation of the PS_Mcodes for various types of modeling
problems. These insights are being used to develop rules in EXPERTthat will
ease the user burden for these classes of problems.

Additionally, the validation problems have provided critical technical
insight into the nature of probabilistic analysis results. In particular, the
results have all shown that, while the deterministic modeling answer my be off
from the known solution,.the distribution of the probabilistic solution is
highly accurate. Thus, by calibrating the model at the deterministic solution
point, the PS_Malgorithm is able to correctly predict the distribution of the
results relative to the deterministic solution. This derives from the
observation that the PSAMalgorithm is based on the use of sensitivity data
from the perturbation algorithm; sensitivity data is seen to be quite accurate
so long as the physics of the problems has been properly modeled.

The first major verification problem is nearly complete. The PS_M
algorithms have been applied to a turbopump blade analysis. The random
variables include geometry and material properties for the static analysis.
Current work is applying random loading conditions and analyzing the dynamic

response characteristics of the blade.

Dr. Rajagopal of Rocketdyne has mademajor contributions to the PS_M
effort in the verification task. He has identified numerous code problems
which have been fixed as well as developing effective graphics interfaces for
the PS_I results which facilitate the interpretation of the data.

1.5 Planned FY88 Technical Effort

Two major new tasks are underway in the current Fiscal Year (the fourth

year of the project). The first is the implementation of°Pro babilistic

Approximate Structural Analysis Methods (PASAM) for selected components. The

PAS_M algorithms have been defined for each of the four components. The PAS._I

algorithms will be based on the observation made from the validation examples

that the distribution of the solution can be accurate to within a

deterministic calibration value, if the physics of the random variables are

3



properly accounted for. Thus, each of the four problem formulations will focus
on the definition of critical response variables, and on the definition of the
role of each of the randomvariables.

Simplified mechanics models will be generated to estimate the required
solution variable dependenceon the randomvariables. It is expected that the
deterministic solution will be crude and in error. It is assumedthat a

calibration analysis or an experimental result exists for defining an accurate
deterministic solution. PASAMwill generate distributional results, normalized
to the deterministic solution. Thus, the analyst will be able to rapidly

determine the sensitivity of the response variable to the random variables, as

well as to predict the overall uncertainty in the design response variable. It

is likely that this version of the PSAM capability could be PC-based.

The second new task is the development of a Level III probabilistic

material behavior model. The goal is to predict random stress-strain curves

that derive from considerations of basic material mechanism behavior or

appropriate phenomenological models from zero load to ultimate load.

Consideration will be given to basic probabilistic variables for describing

materials (grain sizes, defect structures, orientations, temperatures, etc.)

such that the simulations can show the dependency of the response

stress-strain curve character to the independent random variables.

Interactions between mechanisms and dependencies between certain random

variables is to be included.



2.0 NESSUSFINITE ELEMENTCODEDEVELOPMENT

2.] Introduction

The NESSUS finite element code is being developed by MARC Analysis

Research Corporation as part of the probabilistic structural ar_ivsis cPSAM)

effort, coordinated by Southwest Research Institute for the NASA-he, is

Research Center. The objective of this effort is to provide an advanced

analysis capability by combining the versatility of a modern finite elemen_

code with the latest developments in the area of probabilistic modeling and

structural reliability. Special attention was devoted to the efficiency and

generality of the algorithms adopted in order to make the code usable for the

analysis of realistic engineering problems which are representative of typical

SSME applications.

2.1.1 Status at End of FY °86

During FY '86 the NESSUS finite element code gradually evolved

from a purely deterministic finite element code into a basic probabilistic

analysis code. Version 1.1 of the NESSUS ccde was released to all members of

the PSAM team in March '86 and _Jas being extensively exercised at all sites by

the end of FY '86. NESSUS 1 I allowed linear elastic and ei_=nvalue analysis

of structures with uncertain geometry, material properties and boundary

conditions, subjected to a random mechanical and thermal loading

environment• Probabilistic analysis with this version of the code was limited

to a single increment of elastostatic or dynamic e!genvalue analysis, using

the displacement formulation, and with no initial strain and/or stress

effects.

Initial experience with NESSUS 1.1 by the PSAM team members indicated the

need for several enhancements to be provided with the second year code. The

desired enhancements included:

A faster equanion solver using profile storage.

: _ _ _ _t database with results
• p_r_ur_ ionThe ability _o uoda_e an ex.s_ng

obtained in multiple runs.

A "smarter" elastoszasic oernurbation aigorichm, able to bypass most

redundant or unnecessary comp_nations.

The ability to reformu:_se :he Jnger_cr_ec soluLion _: a coin_ other _n_n

the mean.

ORtGIN&L PAGE IS
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A more flexible set of integration schemes for szrain recovery aria

projection, accommodating coll_osec element configurations.

More user-friendly input of material properties for certain classes of

anisotropic materials, allowing these parameters to be rancom.

The need for an enhanced 3D continuum element which could be Cegeneratea

to a high aspect ratio to model plate and shell-like structures.

An algorithm for defining surface pressures on a nodal basis.

Performance improvements on the subspace iteration algorithm used for

modal analysis.

The explicit addition of the second tensor invarian_ for strains and

stresses in the perturbation dasabase.

All of the above were being addressed in the development versLcn of

NESSUS by the end of FY '86, and were to be included in _4ESSUS 1.5 and 2.0,

releasea to the members of the PSAM team on December '86 and February '87,

respectively.

An important feature lacking in these earlier versions or" NESSUS was the

ability to introduce random initial strain and/or stress effects in the

analysis. These can be rather significant in probabilis_/c analysis of

rotating machinery when stress stiffening effects, due to larger centrifugal

loads dominate the response. The solution strategy involved carrying initial

stress terms for each perturbed problem across two increments in a consistent

manner, and had been demonstrated in a special version of NESSUS in October

'86. However, the general multi-increment perturbed problem capability was

not available as a standard feature of NESSUS until the release of version 2.5

in September '87.

The planned extension of the perturbation algorithms in NESSUS to mulzi-

incremenS, inelastic problems raised some important issues involving the

internal data representation and the choice of a solution strategy. In

particular, a decision had to be made regarding whether to pursue: (a) a pure

displacement-based formulation allowing the internal storage of the element

stresses and smrains on an LntegraSion coint basis, or (b} an MHOST-type

mixed-iterative fcrmulaticn allowing the storage of all stresses and strains

on a purely nodal basis. By the end of FY '86, a decision had been made to

pursue the lat%er.



f_nite
A_nou_n it necessarily !nvo!ves the adoption of a less ma_ure

element technology, the decision to pursue the mixed-i_era=tve approach
ai!owed the use of a nodal!y-based strain recovery schemeas aefinec by _he

NASAStatement of WorK. This approach also lends i_self to a more elegan_

implementation of the inelastic perturbation analysis algorithms and a cleaner

interface to the ex_erna! perturbation database. By eliminating zhe need to

rememberthe stress/strain history at the element integration DOings, the

amount of data stored in the perturbation database is reduced, which helps

keep the database files within a manageable size. The adoption of a mixed-
iterative strategy allowed large portions of FORTRANcode to be shared between

the NESSUSand MHOSTcodes, facilitating _he cross-transfer of new _echno!ogy

between these two codes. Nevertheless, due to the computational economy
achievable with the displacement formula=ion in linear elastos_atics, the

option of invoking the _isp!acement method for perturbation analysis of linear

problems will be retained in _he NESSUSfinite element code.

2.2 Code Deliveries Durin_ FY '87

NESSUS 1.5 was released to SwRI, Rocketdyne and GIT in December

86. The _ ,_ _ of this l£mLted release was to allo_ these subcontractors' obje.t_ve

to exercise the code in order _o identify any outstanding problems Chat needed

to be addressed prior to the scheduled delivery of the second year code in

February '87. This version of NESSUS addressed most of she needs identified

while exercising NESSUS 1.1 on representative engineering problems. NESSUS

1.5 also provided for the first time the ability to conduct perturbation

analysis on problems based on a mixed-iterative formulation, although it

lacked the fine control over !=erasion tolerances thab would be desirable for

the effective use of this strategy.

The second year code, identified as NESSUS 2.0, was delivered to

all members of the PSAM team in February '87. The main feature introduced

with this version was an enhanced 3D continuum element based on an assumed

strain field formulation and designed for improved accuracy in bending

problems. This element can be d_=_n..rated to a high aspect ratio in order to

reproduce thick plate and she£1-type situations, and provides for surface

pressure definition and strain recovery on a nodal basts, as defined in the

NASA Statement of Work.



NESSUS2.5 _as releasec _o the memberscf _he PSAMteam Ln

September '87. _ew features [ntrocuced with _his version inc_uCe zhe abiii_'i

to carry perturbation resui_s across multiple load increments, finer ccntroi

over iteration tolerances Fcr use with mixed-i_erative and eigenva!ue
problems, and a full !iorary of assumedstrain continuum elements with

enhancedbending behavior. This version can accommodaterandom initial strain

and stress fields, in order to capture the uncertainties in the stress

stiffening effects governing the response of rotating machinery subjected to
large centrifugal stresses.

2.3 Extension of NESSUS/FEM to Mixed Method and Incremental Analysis

The objectives of the PSAM effort include the Ceve!opment of

probabilistic finite element methods for handling not only linear problems but

also problems involving nonlinear material and geometric response. A

successful strategy for achieving these goals will require: (a) the

development of the means for tracking several perturbed solution paths across

multiple increments, and (b) the ability to compute accurate response

sensitivities for problems which have not been or cannot be i_era_ed to a very

high accuracy. Both issues were addressed during the past year as part of a

strategy for extending NESSUS/FEM to the mixed method and incremen_a!

elastostatic analysis. These extensions involve data manipulations which are

very similar to those needed for mildly nonlinear problems, and this

development may be regarded as the first step towards the extension of

NESSUS/FEM to material and geometry nonlinear situations.

As stated above, _he desire to rely on a purely nodal data representation

for stress and strain for inelastic problems naturally led to the adoption of

a mixed finite elemen_ formulation [I] expressed in terms of nodal

displacement, stress and strain. A practical approach for the solution of the

mixed problem was developed under the auspices of the HOST program at

NASA/LeRC and implemented in the M_OST code. The MHOST implementation relies

on an iterative strategy to recover the mixed solution,'uslng the displacemen_

method solution as the iteration preconditioner. With this approach, the

introduction of stresses and strains as mixed var_ab!es does not significantly

increase the problem size, since only a matrix with the size of the number of

d ] _ _ d_g_sisp_ac ....e ....... of freedom needs to be factorLzed

8



_,_eiasz[c oroblems, the mixed me...oo can be usecin the analys_s of _

effectively by combining the nonitrear [cersc!cn _4i_h the recovery of the
mixed solution in the same i_era_ive !oop. Since in _ypical nonlinear

problems the reslduais are not iterated to within machine accuracy (she
residual load correction term automa_ically carries it forward into the next

increment), the mixed-iterative approach does not require a number of
• " _, different from _hat used with theiterations that is sign_fzcans_y

displacement method.

That is not the case in'the analysis of linear elastic problems, since

the direct solution of the displacement equations will yield a residual force

vector that merely reflects machine round-off in the multiole iSerations, even

for a linear problem, in order to recover the mixed solution from the

_S

displacement result, it should be noted, however, _hat the grea _= _

improvements in the strain and stress solutions obcained with the mixed method

occur in the first few iterations. Hence, for many problems, i_ is rather

uneconomical to attemp_ to iterate the "mixed residual" to a very low value.

Initial experiments with the use of the eiastoszatic perturbation

algorithms using an MHOST-type mixed-iterasive formulation have demonstrated

the feasibility of the approach. However, problems will arise whenever the

magnitude of the imposed perturbations result in a change in residuals that is

smaller than the residual carried over from the unperturbed problem, it

should be noted that a similar situation will be encountered when perturbing a

nonlinear analysis performec with the displacement formulation, since in

nonlinear problems the residuals are not usually iterated to a very small

value (just as with the mixed-iterative formulation).

The solution involves separating the residual load component induced by

the perturbation from the residual load vector carried over from the

unperturbed problem. This strategy has been described as an "equilibrium

isp_ac ........ucdate for the perturbedshift" and amounts to computing the d _ .... " .

p

problem using

d :dn r _ri
Q

(_ I_

9



where a carat is usec =o denote the per[orbed quan=i_tes and r is %he

uniterated residual load vec=cr from the unpersurbed orobiem, gh!s approach

provides an effective method for computing _he sensitivity of a soiu=ion which

has not been iterated to a very small residual.

The basic mechanismused to perform "equilibrium shift" is implemented in

NESSUS2.5. In order so use "equilibrium shift" effectively, it is necessary

to manipulate the i_era_ion controls differently for the unperturbed and

perturbed solutions. The recommendedapproach involves the generation of a
mixed unperturbed solu=ion in which the iteration =oierances are relaxed in

order to achieve convergence with only a few steps of mixed strain recovery.
This represents a re!a_ive!y inexpensive way of improving the smoothness of

the stress and strain solutions. A!! subsequent perturbation problems are

then iterated to a finer tolerance, which is imposed only on the componen_of
the residual load induced by small deviations of the random variables from

their unperturbed values. The net effect is to prevent the response

sensitivity calculation from being lost in the noise present in the

unperturbed solution. Whenused in this way, the efficiency of the
perturbation algorizkm using the mixed-iterative formulation can be made to

approach that of the displacement method, while retaining all the desirable
features associated with the mixed formulation.

The extension of NESSUS/FEMto incremental analysis involved the

development of a mechanism for tracking several perturbed solution paths

across multiple increments. In general, this will include the ability to

recover the total displacements, stresses, elastic and plastic strains, and

any other state variables from the converged solution for the current

perturbation at the previous increment. By relying on a mixed-iterative

formulation with all state variables defined on a nodal basis, it is possible

to use the current structure of the perturbation database to store and recover

these quantities. The sameholds for linear elastic analysis using the

displacement formulation, even if multiple load increments are present. Yhe
data structure currently implemented in the perturbation database _.iculd no_ be

adequate for the use of the displacement formulation for inelastic problems.
since that would recuire the availability of any history-dependen_ state

variables (e.g., plastic s=rains) cn an element integration oo[n_ basts. _h_s

is one reason why _he dis_'acemen_ _ethcd :s not being pursuec for ine[as=!c
proDiems _ithin the P_A_e:'for=.

lO GT_q_NAL i:A_E iS
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The simpies_ type of analysis irvclving a consis_en_ tracking of

_.a_ to the introducs!cn
perturbed solutions across muiziple increments is _=_ "=_

of random initial stress and strain f[elas. Initial s_ress effects account

for the change in laterai CeflectLon and natural frecuencies when a _urbine

blade is subjected _o large centrifu_a! loads. If there are uncertainties in

the rotation speed =_ ma_e:'ial prooerties etc., these will introduce, geom__ry, • ,

uncertainties in the initial stress field, which can be estimated by a

perturbed elastostatic analysis. In the following increment, each persurbed

initial stress field obcainea in the previous increment is usez to compute the

stress s_ifFening effects for che corresponding percurbaticn, it is important

that the bookkeeping is done correctly, so that the change in initial stress

resulting from perturbing a given random variable is accounted for when the

same variable is perturbed again in the following increment. In a similar

manner, it is possible to include the effect of a random initial stress fieid

computed in a probabi!istic elastostatic problem on a subsequent random

eigenvalue analysis. Random initial szrain fields (induced, for instance, by

a random temperature field) are handled in exactly the same way.

As described above, in order to minimize in-core data storage

requirements, NESSUS/FEM utilizes the perturbation database For temporary

storage of the perturbed initial strain and stress fields. Hence. for

analyses involving stress stiffening effects, the perturbation database size

may have to be expanded in order to accommodate the generalized initial stress

field. However, in order to keep the database size as small as possible,

these additional quanti_ies will no_ be stored unless it is clear that they

are needed for the type of analysis in progress. It should be noted that

rem__n
earlier versions of the ENCODE and DECODE utilities (from NESSUS 2.0) =_

compatible with the current format of the perturbation database. The same

holds true for the perturbation database interface to NESSUS/FPI.

2.4 Advances in Element Formulas/on

Within the past ,year, several members of the PSAM Zeam have e',D"=ss _ a

desire to develope advanced element technology tailored to address specific

SSME applications in a more effective manner. Many of the components

addressed with this effor; can be characterized either as a s__nc_, con ....u_m

or as a very thick, variable thickness shell using curren_ finite =_=_P'-

technoio_y. An accurate solution car _.sually be obtained by using con;inuum

e_m_-%s. Howeve _, 5he moceling of slender shell-like components _s a 3[;



consinuum requires a very Fine meshan/ involves consideraole computational

and moae!ing effort. This approach _s often _oo expensive for standard design
practice (see Figure 2.1). On the ocher hand, if shell elements are used, the

computational effort is reduced oy somedegree of accuracy and resolution is

often sacrificed. This is often the case if the s=ructure exhibits strong

curvature (of radius less than five times the thickness of the shell), large

thickness variations or very localized thermo-mechanical loading. Also, the
stresses in the neighborhood of shell intersections and connections are not

accurately calculated.

Manyheuristic rules have been developed for the use of shell elements in

similar problems. This is frequently done by selecting an "effective"

thickness near the discontinuity or by coupling the intersections in special
ways. Nevertheless, it would be useful to have 3D elements with which such

problems could be modeled effectively and accurately. In principle, continuum
theory should always be able to represent the "exact" solution.

However, regular continuum elements often lack the appropriate

deformation modes to model shell-like structures in a satisfactory way. This

was first observed by Ahmadand Zienkiewicz [3] in the development of the

classical 8-node thick shell element. The problem was partially overcome by
using a reduced integration formulation. Similar ideas were used later on in

the development of thick shell elements. These elements frequently resort to
the use of special interpolations for the transverse shear terms in crder to

retain the ability to accurately model the bending behavior of shells. These

include the Heterosis element of Hughesand Tezduvar [hi and the 8- and 9-node

thickness element proposed by Hinton and Huang [5]. It can be argued that
similar interpolations could be used for the strain and/or stress field '_

continuum elements. Hence, one should be able to design continuum-like

elements that perform well when _=_rated in one direction to model sh=_l-

like structures.

There are several kno_n strategies for constructin_ continuum eiemenzs

with enhanced bending behavior (see Figure 2.2). One of _:he first attempts

employed the use of selective integration [6]. The original element was very

successful in the rectangular configuration when aligned with the global

coordinate system, but behaved poorly otherwise. The formuiation o:_ 'K_I=.._=..^_-_

_n_ Key [7] cured the problem by /n=roduc_ng a Local car=escort e/emen_

coordinate sysSem and thus makin_ the shear _erm !nvarLan_ _ith res?ec_ -c

12



Figure 2.1 Localfzed Thermal and Mechanical Effects Crucial to the

Analysis of Components Such as This Blister Specimen

Model Cannot be Adequately Captured Using Simplified

Shell Models 13
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Figure 2.2 The Evolution of Low-order Continuum-type Elements Towards

Improved Accuracy in Bending Problems
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change of the global coordinate c,,stcm. This formulation is not easily

extended to anisoErop[c probiems. [n which the shear terms may be coupled with

the direct s_ress components. A related approach involves the use of full

reduced integration with the addlE[on of hourg!ass control modes s_hich are

designed to enhance bending behavior. Examples include the formulation of

Kosloff and Frazier [8] and the elements advocated by Flannagan and Be_y_sc,.Ko

[9]. These elements lend themselves to very efficient implementation and have

become quite popular for certain applications. The original library of

continuum elements implemented in NESSUS/FEM (element Types 3, 7, 10 and 11)

• "_= formulation Another early attemot by Wilson [10]
are based on a slml__r • -

resorted to the addition of two incompatible quadratic "bubble" modes in an

effort to reproduce the quadratic displacement field corresponding to "pure

bending." However, when the element assumed the form of an arbitrary

quadrilateral, it was found to behave erratically and failed the patch test.

A cure for the problem was prooosed by Taylor and Wilson [11] which is based

on the evaluation of the "bubbie" function derivatives at the centroid of the

element. The resulting e!emenu was found to pass the patch test for arbitrary

configuration, and is currently implemented in a number of commercial codes.

However, these elements are used primarily for linear elastic analysis, since

it is not readily apparent how the strains associated with the "bubble" modes

should be handled in elastoplastic situations. Recently, Pian and Sumihara

[12] have proposed a new element which exhibits excellent bending behavior

even for somewhat distorted configurations. The eiement is an assumed stress

_ _ to define th_
hybrid, based on the use of five independent stress _aram_t_.s -_

in _ _ _0, • "state of stress at the " _=_ " of the element The assumed stress aoproach

offers some problems regarcin_ the implementation of plasticity algorithms.

This is due to the fact that the most successful plasticity algorithms to date

have been strain-driven, and not stress-driven. In particular, the

implementation of a stress-drive:_ plasticity algorithm (in itself a major

coding task) cannot easily accommodate the perfectly plastic case in thep

absence of work-hardening effects.

The approach pursued at _......_Jas aimed at the development of = family of

continuum-type elements with enhanced bending behavior and re+'_ng good

performance when degenerated to _ high aspect ratio. Of course, there are

limits as to ho_ far one can _=.,y s_c!] _ dec=n_r_:on For ele=enzs of

q, 9, tozh -_=
_=n=tn I and thickness t_ the benz_F.g _iffness is of order 0(_ _ I-;, ..-

15



membraneand transverse shear _.... n__s are o. order 0(_), and the direct

transverse stiffness (change of zhickness) is of order 0(12/t). Hence, for

numerical reasons, [_ does not appear desirable to degenerate these elements

to an aspect ratio t/1 q 0.01, which would cause the loss of more than ei_h_

digits accuracy. This should no_ present a major problem, since _he primary

application of these elements would be for thick shell-_ype situations, in

which an element aspect ratio t/1 < 0.! should be adequate. The elements were

constructed using an assumeds_rain formulation. The basic strategy involves

the identification of a set Pf independent stress modesrepresenting the

desired element behavior, followed by the construction of a corresponding set
of strain models which, under appropriate conditions (for any isotrocic

material or particular orthotropic material orientation), will yield the
desirable stress modes. This allows _he formulation of an element which is

based on a strain-driven constitutive algorithm, and can be readily
implemented within the existing code framework. The strain modes are used to

interpolate the strains within the element and are related to the displacement

gradients by a weak variational form. All assumedstrain modes are expressed

in terms of a local element cartesian coordinate system obtained by polar
decomposition of the isoparame_ric mapping at the centroid of the element.

This strategy not only simplifies the derivation of the assumeds_rain modes,
but also is expected to enhance the robustness cf the element in distorted

configurations. The stretch tensor obtained in the polar decomposition is

used for computing scale factors to make the element computation

dimensionless. This was observed to be particularly useful for reducing

round-off for very high element slenderness ratios. Althouyh the cost of

forming the B-matrix for the assumedstrain elements can be as high as 2-3
times that of a standard isoparametric element, the increase in cost oer

element is frequently offset by the ability to use a muchcoarser mesh [n
bending-dominated problems.

The library of assumeds_ra[n elements implemented in _ESSUS,'FEMincludes

4-node quadrilaterals for plane strain, plane stress and ax[syr_etric

problems, and an 8-node solic element for modeling three-dimensional

continua. The current implementation can be used with either the displacement

or the mixed formulation and supports different integration rules for strain
projection and residuai recovery. Ho_Je,/er,due _o =he unccnven:ion_[ nature

of the eiemen_ formulation. _e _n_e_raclon ruie for _he elemen_ s_[ffne_s

16
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ccmpusacion is fixed. These elements can be collapsed into triangles, we_ges

and tetrahedra, in accordance wizn she rules imoiemented for other continuum

elements.

in addition, an algorithm has been developed to allow the nodal

definition of pressure loading on 2D and 3D continuum meshes (see F___r_

2.3). The aglorithm is based on a nodal assembly of tributary areas at each

node in such a way _hat a unique outward boundary normal vector is defined at

each surface node. These normals define the effective surface orientiation

and the direction of the app$ied pressure at the node. The basic concepz is

depicted in Figure 2.3 and involves the following steps:

I. Apply unit pressures to all faces of each element.

_n o2. Compute the correspond _ _ nodal loads

3. Assemble the element force vectors.

4. The assemble vectors cancel-out at all internal nodes.

5. The actual nodal forces are obtained by multiplying the outward boundary

vector by the negative of the nodal pressure value.

For small deformation problems, this operation is carried out only once,

during the first element assembly loop, and the resulting boundary normals are

used to compute consistent pressure loads throughout the analysts.

In probabL!iszic finite element problems with uncertain geometry and

nodal pressure definition, _he boundary normals are recomputed for the

perturbed configuration at every gecmetry perturbation. Hence, if a geometry

perturbation results in an increase of the surface area ezposed to pressure

loading, the corresponding increase in equivalent nodal forces is

automatically accounted for in the algorithm. Likewise, in finite deformation

problems using an updated Lao._noian formulation, the recomoutat£on cf the

boundary normals can easily account for the follower pressure effects on the

applied loading vector.

2.5 Deve!ooment of Deterministic Finite Deformation Ai_orizhms

_In,_ deformation
The ability of conduc_ elastoplastic deterministic _ _"=

analysis using a mixed-iterative formulation was introduced in NESSUS/FEM

within the time period covered _n this progress ._o.t The basic formulation

employs a kagrangian mesh description, with _he equations of motion evaiua_eC

at _ne current (deformed configuration. Of Len descrY' _ ",'scas

17
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Lagrangian" formulation [_3], this approach offers considerable computational

simplicity since, by contlnualLy updazing _he meshgeometry to the current

configuration, all matrix expressions can be madeto assume_he same fcrm as
in small deformation theory. The only additional matrices involve deformation

gradients and rotation tensors, along with the matrices associated with

follower forces.
The follower force componentsare evaluated using body force and surface

traction values at the end of the current increment. The fol!cwing force

matrices associated with change of volume or area are symmetric and easily

included in the stiffness reformulation. However, unsymmetric matrices are

associated with the rotation of follower forces, in keeping with the

philosophy of the mixed-iterative approach, any contributions from unsy,_etric
matrices are accounted for in the residual load correction term, and recovered

by the iterative process. This avoids all the problems associated wish the
introduction of an unsymmetric stiffness matrix.

Using the mixed formulation, concentrated nodal follower forces enjoy the

advantage of having the necessary rotation tensors readily available on a
nodal basis as an integral part of the formulation. These nodal rotation

Sensors are easily obtained by polar decomposition of the nodal deformation

gradients.
The constitutive equations for elastoplastic finite deformation

computations are based on the use of the Green-Naghdi rate of Cauchy stress
and rate of deformation [14]. This rate was chosen for its computational

efficiency, and its ability to avoid non-physical oscillatory stress response
whenused in conjunction with kinematic hardening [!5]. The specific rate

form for Cauchy stress used in this implementation can be expressed as

V oR RT _ RT (2 2)(_ = _ + - G

p

where R is the rotation tensor obtained by polar decomposition of the nodal

deformation gradients. The resulting constitutive equation

T (_ 3)
o + c R RT - _{ R': = D d ""
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wn_._ d is the rate of deformacLcn sensor" can be transformed using =he
rotation tensor to ske equivalent form

oR : DRdR (2.4)

where

aR : R" oR

D_ : RTDR

dR = RTdR

For the continuum elements, the constitutive laws are expressed in the

Kloba! coordinate system, and the above transformations can be uzilized

directly. Thus, the evaluation of the constitutive equation involves

transforming its components from the global to the rotated coordinate system,

with the actual evaluation being form-identical to the small deformation case.

By contrast, the constitutive equation for the shell element is expressed

in terms of a local Cartesian coordinate system, defined by averaging the

normal vectors for all shell elements connected at the node. In finite

deformation computations, the local system is continuously recomputed during

the geometcy update process. This results in a nodal coordinate system which

remains normal to the shell surface as the model deforms. Therefore, the

local coordinate system in which the constitutive equations are expressed _.Jil!

rotate with the structure.

The finite deformation algorithm implemented for _he -_ :__,,e_ element takes

advantage of this fac_ to avoid additional calculations involving

transformations to the constitutive equation. This effectively replaces the
w

rotation tensor in the equations above wi_h a continuously updated =_ooal-_o-_'

local transformation tensor.

A similar transformat£on was z..,ple...en_eafor the beam element.

2O



2.6 Enhancements to Database Manipulation

The perturbation database format implemented in _IESSUS provides
the

considerable flexibilizy _er m=..__ment perturbation data obtained _n

_-_, , o Ear!i rsions
course of multipie analyses _vi_h _iESSUS/FEM and Ja_._US, F,I. .er ve

of NESSUS fell short of utiiizing the full extent of capabilities provided for

in the database design. The development of new features for database access

and data management in recen_ versions of NESSUS/FEM effectively opened up _he

use of the database to perform more sophisticated types of ana!ysis.

The perturbation database resides in a binary (unformatted) direct-access

file, and is structured as a two-way ordered linked list. This type of data

structure allows the insertion, deletion and replacement of individual entries

without the need _o move large blocks of data. It is, therefore, possib!e to

maintain and expand an existing database with results obtained in multiple

runs of NESSUS/FEM. These capabilities are accessed wi_h the use of the

RECORD option, allowing the user to add or replace individual perturbed

solution sets. This option makes efficient use of the data structures al.__d_

implemented in the perturbation database, and performs updates by relocating

points within the linked lis_.

An example of the data manipulations performed with the RECORD option is

schema_ically depicted in Figure 2._. An initial run of NESSUS/FEM is

performed for three increments of static analysis with two perturbations cn

each of the first two increments. If all data sets are recorded, the

resulting perturbation database will look as shown on the lef_ in the

figure. Further investigation of these mloh_ indicate the lack of a

_ = ,, converged solution) forsatisfactory result (for instance, l_c_ of a

perturbation I of incremen_ @. In addition, it becomes apparent that three

additional random variables should have been included in the anaiysis for

increment @. Hence, a second run of NESSUS/FEM is performed for increment 0,

recording only the new values for perturbation i (_hereby suoerseding the

earlier results) and perturbations 3 through 5 (corresponding to a

perturbation of each of the three added random variables). Any computations

no_ needed for the calculation of the modified or added perturbations can be

skipped on the second run. The perturbation database, ucdated after the

second run, will be structured as shown to the right in Figure 2._. This

degree of flexibi!i_y allows very efficient use of the certurbat _on database
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Figure 2.4 The Perturbation Database is Used to Naintain a Permanent
Record of the Analysis History for a Given Model
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for realistic problems which may recuire severai :est runs to obtain a good

local representacion of the response senslt_v_cy.

For problems in which oreLiminary results indicate that the limit state

lies we!! beyond the range of _he oerturbations used _o determine the response

sensitiviuy, it would be desirable to provide a way to reformulate the

perturbation problem at a point closer to the limit state. This would allow

the computauion of accurate ooint orobabi!ity estimates in the tails of the

distribution, even t_cugh the response characteristics at the tails may be

considerably d!fferen_ from what is observed near the means. This is possible

with the use of the MOVE option, which redefines a new deterministic

(unperturbed) state at a point other than the mean (see Figure 2.5).

In a way, the MOVE option represents the probabilistic counterpart of a

.... _ o_enwe!l-known deterministic design practice. An experienced eng_n_, will °_

choose to base his design on an analysis involving an extreme loading

combination (worst loading case) acting upon a weak structure (with nominal

material properties somewhat below the mean values). Using a reliability-type

formulation, the location of the "design point" will provide the most likeiy

combination of rando£ variables that will result in the limit state being

exceeded. Based on this information, it is possible to use the MOVE oc:ion to

manipulate the random variables in order to reproduce the structure mos:

likely to exceed a given limit state.

A print-out of the new unperturbed problem at the redefined deterministic

state is included in the output from NESSUS/FEM. This provides a conven _= _

way of checking for input errors in random variable definitions. In addition,

since a complete resc!ution of the problem is performed at the redefined

deterministic state, the MOVE option also provides a (some_hat expensive) way

of checking the results obtained with the perturbation algorithms.

As indicated above, the perturbation database resides on an unformatted

(binary) direct-access file which cannot be displayed or edited with a text

editor. However, for small problems, it wcu!d be desirab!e to be able tor

generate a formatted translation which could be disp!ayed at a console or sent

to a line printer. This can be done by using the DECODE utility provided with

MESSUS (see Figure 9.6). This u__l_y is a stand-a!one program which provides

a formatted translation of a binary perturbation database generated by

_-_NESSUS/FEM. The original binary database .z±e can be regenerated from i_s

formatted translation by using the c_.tuuc u_ziz_',, a_s,:, oro'il "=_ with
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the Deterministic State at a Point Away from the Mean
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NESSUS. A small loss of accuracy is incurrec in the process, since the

fcrmat:ed translation only carries five digit accuracy in order to fit the

data from the !arges_ record within one 132 character line. in sai_e of the

shorter precision, the formatted translation files still occupy more memory

than the (more compact) binary files, so that it may not be practical to

obtain formatted translations of very large database files.

Unlike the binary direct-access files, which have machine dependent

format, the formatted translation can easily be ported between different

computers and operating syst@ms. Hence, the availability of ENCODE and DECODE

utilities on different machines allows the exchange of database files

generated by NESSUS/FEM. With the emergence of smarter network software, such

as NFS, the need to physically move database files between computers may no

longer be as important. However, until these smarter networks come into

widespread use, the formatted database translation will continue to provide a

standard format for the exchange of database files.

2.7 Other Enhancements and Improvements

Several other enhancements and improvements were introduced in NESSUS/FEM

in the course of the past years. These enhancements reflect needs that were

identified by exercising NESSUS on a variety of realistic engineering problems

and across a broad spectrum of computing equipment and operating systems.

_nat follows is merely a list of some of the most visible enhancements

implemented in this period.

Early attempts to use existing finite element meshes for prcbab[listic

analysis with NESSUS/FEM identified the need to allow for collapsed

configurations of the standard continuum elements. This raised some conflicts

with the nodal strain projection algorithm used in NESSUS, since the use cf

nodal _uadrature requires a we!l-defined Jaccbian for the isopar_etric

mapping at each node. This problem was avoided by allowing the use of row-sum

lumping to form the "lumped vo!ume" matrix used in the strain projection

a!gorit_. Although the use of row-sum lumping is not _s accurate as with

nodal quadrature, this strategy al!cwed the degeneration of continuum elements

to form triangles, wedges and tetrahedra in order to preserve the topology of

existing meshes. Due to its superior performance, _he use of nodal quadrature

is sti!l recommended for most regular meshes without collaosed elements.

additional efforts to improve _he performance of to,J-sum !um9ing are planned

for the coming year.
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The existing format for the input of anisotropic material properties was

found to be inconvenient for the input of simple types of anisotropic

materials which are being investigated for use in SSME components. The

materials in question are single-crystal alloys exhibiting cubic symmetry

(such as PW1480) and amenable to a three-parameter material description.

Furthermore, it was desirable to allow all three parameters to be random,

which could not easily be done using the input format for general

anisotropy. As a result, a special extension to the [sotrop!c material

properties input reader was'implemented to allow the specification of a three

random parameter material model. This feature has been used extensively in

the analysis of an SSME HPFTP turbine blade model at Eocketdyne.

During the eigenvalue analysis of some structural problems using subspace

iteration, the matrices on the reduce eigenproblem were found to differ by

several orders of magnitude, resulting in a very poorly conditioned problem.

This often resulted in overflow problems during Jacobi iteration on machines

that use a large mantissa with small exponent (such as the D-float format on

VAX). The problem was cured by using a spectral transformation to improve

conditioning of the problem in the subspace. A better algorithm for selecting

the trail vectors also helped improve the performance of the algorithm.

The eigenvalue perturbation algorithm currently implemented in NESSUS was

subjected to a very extensive cleanup in order to remove a number of existing

bugs, streamline _he code and improve its reliability. In addition, the

convergence criteria used to stop the recursive algorithm have been modified

significantly. If an elastostatic analysis is used to obtain the initial

stresses prior to the dynamic mode extraction, it is now possible to change

the convergence criteria for the eigenvalue problem from the values used in

the static perturbation analysis.

A new option to extract the deformation modes present in the assemble

stiffness matrix is availa_ie in NESSUS/FEM. This option involves the

solution of the standard eigenvaiue problem.

(K - _ I) x : 0
(2.5)

The resulting eigenvalues represent a_-lowable deformation modes for _b.e

assemble stiffness, and the correspond:-ng e!genvaiues __ndicate the strain

energy associated with the =oce. This information is very user J! for _he
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development of new element formuia%[ons and to obtain stability estimaZes for

problems involving per_uroations to the st[_'_fness matrix.

A new MONITOR facility was introduced to provide a convenient way to

monitor the behavior of critical response variables in the course of

iteration. A summary cf the current values for all monitored variables ks

printed on zhe !og files at every iteration. During interactive execution,

the log file is displayed on the terminal screen, allowing the user to track

these quantities while the iteration is in progress.

Until recently, the trahsient dynamics capability using direct

integration of the (deterministic) equations of motion was non active in the

NESSUS code. Following a major cleanup of this analysis driver performed

under the auspices of the MHOST project, this option has been reactivated and

tested in NESSUS/FEM.

A single-step direct time integration scheme based on the Newmark-a

family of algorithms is used. Individual schemes within this family of

algorithms may be obtained by selecting the control parameters for the Newark

a!gorit_hm as follows:

Y B INTEGRATION SCHEME

I/2 0

3/2 I

I/2 I/i0

3/2 U/5

I/2 1/12

I/2 I/_

Central Explicit

Backward Difference

Linear Acceleration

Galerkin

Fox-Goodwin

Average Acceleration

The "average acceleration" scheme is the system default', with the stress and

strain recovery at the end of each time s_ep. Only Rayleigh-type damping may

be used in this type of analysis. In addition tc all the mechanical loadings

available for static analys[s, a general periodic loading or displacement

constraint can be used, wi_h oeriod and amplitude ooth specified on a nodal

basis. _[odal displacements, velocity or acceleration may be specif[ed as oar_

of _ke initial conditions for the cynamic proc[em.

28



Finally, the MENTATcompatio[e pos_-fi!e writer _n NESSUSwas extended to

include modeshapes for vibration, buckling and deformation modeana!ys_s.

The output for eigenvalues and eigenvectors follows the former MARCK.l pose-
file format and is fully supported by the current commercial version of
MENTAT. As with the s_a_ic problem, only the unperturbed eigenvalue solution

is written to the pos_ _iie.
2.8 Random Vibration for Uncertain Structures

The code used to perform random vibration analysis (PSD) in NESSUS was

the object of extensive c!eah-up as a first step towards extending the curren_

capabilities to include uncertain structures as well. A strategy for the

implementation of random vibration analysis of uncertain structures is

currently being laid-out. The proposed implementation is based on the use of

the approximate natural frequencies and mode shapes for the perturbed

structure, obtained with the eigenva!ue perturbation algorithm, to provide

information on the sensitivity of the RMS stress and displacement to small

fluctuations of the random variables.

A more sophisticated capability will invoive the introduction of the PSD

level itself as a random variable. The PSD level will have to be nand!ed as a

special type of random variable since it is irrelevant to the perturbed

eigenvalue computation and will only affect the computations carried out in

the frequency domain. The introduction of uncertainty in the PSD level may

provide a systematic alternative to the more conservative practice of

constructing an envelope to the PDS function.

2.9 Future Effort: Nonlinear and Transient Problems

The iterative perturbation approach adopted in NESSUS/FEM appears

suitable for extending the existing formulation to situations involving at

least mild nonlinearities. The basic solution strategy will amount to

tracking multiple oerturbed time-histories, using the soluticn to the

unperturbed problem as the iteration preconcitioner for all perturbed problems

at a given time step or load increment. D_fficulties _ill arise if some of

the perturbed problems drift too far from the unperturbed state in the course

of an analysis. The problem may be aggravated by the presence of constrain_

equations, which arise naturally from the formu!at[on for deviatoric rate-

independen5 p[asticity.
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Other problems are expected in situations involving repea_eC cycilc

loading, since the response for intermediate perturbatlcns is not necessarily

bounded at all times by the response corresponding to she largest

perturbations. This problem has been observed in works by other researchers

dealing with transient dynamics, in which the variance of the response appears

to vanish at several points in time [16,17]. No solution has been offered for

this problem.

Yet another problem involves the emergence of secular terms in the

response for the perturbed system, which may grow unbounded in time and

invalidate the solution for large times. This pathology is well known to

researchers working on nonlinear oscillations of complex dynamical systems and

there is extensive literature on the subject. This problem has been discussed

by Liu and Belytschko [17], and appropriate secularity filtering s_rategies

have been suggested.

Perhaps the most intractable problem in probabilistic nonlinear mechanics

involves the presence of bifurcations, in which very small perturbations of

the deterministic problem can lead down very different solution paths. With

present finite element technology, these problems can become extremely complex

even for deterministic analysis. However, the problem of detecting the

presence of a nearby bifurcation point represents a much simple problem,

involving the solution of a stochastic eigenvalue problem.
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3.0 NESSUSPROBABILITYALGORITHMDEVELOPMENT

3.1 Introduction

This chapter su_.marizes _he prooabt[ity algorithms developed for the

NESSUS code. Two methods of probabii[_y modeling are to be included. The

first of these is the Fast ?robabi!i_y integration (FPI) method [I,2]. The

second method is the Monte Carlo me_hod. Both methods use the same scructural

sensitivity data, which is generated by NESSUS. Confidence levels will be

estimated for the response variables distributions that are calculated.

The development of the Monte Carlo methods, performed at the University

of Arizona, is completed. A summary of the Monte Carlo methods is included in

Section 3.2. Among the four methods investigated, the Harbitz method is

considered the best me_hoc, therefore, it will be integrated into the NESSUS

code.

Section 3.3 describes the on-going development of the method for

estimating the probabilistic solution for the entire structure using limitel

perturbation solutions at selected nodes.

Section 3._ discusses a strategy for integrating the FP[ and the Monte

Carlo codes. The issue of defining the proper perturbation ranges is

addressed.

Section 3.5 defines a code-structure that extends the NESSUS/PRE

capability from normal to non-normal correlated random variables. The

development of the FORTRAN routines for performing the variable

transformations is complete. In the future, minor modifications of the PRE

and FEM modules will be required to integrate the codes.

Section 3.6 describes _wo enhanced FPI iteration algorithms. One

algorithm is for solving a response value given a specified probability

value. The other algorithm is for solving a probability value given a

specified response value. As demonstrated by an example, these algorithms

provide very efficien_ solutions.

Section 3.7 demonstrates, using one of the validation problems, the

confidence bound estimation procedure. The procedure is consistent with the

NESSUS/FPI solution algorithms.
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3.2 Fast Monte Carlo Metnocs

Consider the random variable Z as a function of the random vector

= (X I, X2,..X n)

z : h(X) (3._)

The distribution of each X i is known. It is assumed that all ..[_.are muzua!!v.

independent.

A fundamental problem of probabi!istic mechanics and design is to compute

a point probability,

p : P[h(X)gh ] (3.2)
- o

For example, p could represent the probability of exceedance of a defleczion

or perhaps the probability of failure.

Another problem is the extension of the first to the construction of a

cmmulative distribution function.

Fz(Z) : P[h(X)gz] (3.3)

Clearly, the two problems are identical, but optimal strategies for analysis

may differ. For exam.pie, to construct the CDF, one option would be to obtain

point estimates of F Z at selected values of z, then fit a curve through the

points. A second opticn would be to construct an empirical distribution

function from a large sample of Z i. There are a number of Monte Carlo

techniques which can be employed to estimate p and/or FZ.

Monte Carlo traditionally has been considered to be a "last resort"

method for solving a probability or statistics problem because of high cost

relative to accuracy of the results. However, in recent times a combination
P

of the development of new efficient numerical techniques and new digital

computing hardware have made Monte Carlo more attractive.

Appendix C presents descriptions of the following Monte Carlo programs

dedicated to probabilistic structural analysis.
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I. "Conventional" Monte Carlo: For conventional Monte Carlo, a randcm
sample of X is obtained, in turn, a random sample of Z is computed us,n_
Eq. (3.1)." An empirical distribuzion function of Z is constructed.

2. Variance Reduction Using Antithetic Variates: Given a sample of X, a
negatively correlated "mirror image" X' is computed. The variance of
point probability estimates is reduced by averaging the estimates made
by X and X'.

3. MeanValue Method with Stratified Sampling: This method directly
evaluates a multiple integral expression for point orobabilities.

4. The Harbitz Method: This is a schemefor reducing the sample space
for X thereby, in theory, producing efficient point probability
estimates.

Results of the performance study are summarized in Figure 3.1 where CYBER

175 CPUtime is plotted as a function of probability level S and number of

variables, n. It is important to note that B is related to the tail

probability level p by

p: _ (-_)
(3._)

where ¢ ks the standard normal CDF. Computer time for each method depends on

factors other than probability level and number of variables. The

distribution type for each factor and the form of the response function

influence computation time. Therefore, the curves of Figure 3.1 must be

interpreted as characterizing the relationships for purposes of comparison.

Several general conclusions can be made regarding the results presented

in Figure 3.1.

I. Fast probability integration (e.g., the Wu/FPI method) is far more

efficient than Monte Carlo.

2. Variance reduction does not appear to be competitive with the other

methods.

3. For small numbers of variables, the mean value and Harbitz methods are

very efficient with the Harbitz method having a sl'ight edge.

4. Computing time for both the mean value and Harb[tz methods increases

sharply as the number of variables increases.

5. For small n_bers of variables, conventional Monte Carlo is not

efficient. But the increase in computing time increases linearly wi_h

the number of variables. Because these curves are flatter than the mean
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value or Harbitz curves, conventional Monte Carlo actually becomesmore
_ °e._icien_ reia_ive to eacn of these methods above a g_ven ._

6. Conventional Monte Carlo gets very expensive as the probability level

decreases. No_e tha_ the _ = _ curve is off of the chart.

7. One feature of conventional Monte Carlo is that a full sample of the

response variable can be generated. Therefore, the entire CDF of the

response variable can be generated. On the other hand, several

probability points have to be computed using the other methods. And she

accuracy will be better for larger probability levels and worse for

smaller p.

In summary, a general conclusion is that the Harbitz method seeems to be

the preferred approach. Note, however, as the probability level p gets !arger

(and _ smaller), the Harbitz method approaches conventional Monte Carlo.

3.3 The Probabiiis_[c Field Problem

Probabilistic s_ructural analysis using the NESSUS code requires

constructing response function surface for each response variable. Such

response surfaces can be constructed using curve fitting schemes. The NESSUS

probabilistic solution strategy is to use only low-degree (i.e., first- and

second-degree) polynomial surfaces because higher-degree surfaces are

difficult and imprac_ica! to construct using the NESSUS generated response

solutions. For such low-degree surfaces to be useful for generating accurate

probability information, it is necessary to make a good selection of the

response solution points for response surface approximations.

In the current NESSUS technology, the selection of the solution points or

regions is based on the "most probable point" (or design point) concept [2-

4]. The validation studies (see Section 6.0) indicate that the above strategy

works well. However, for the solution to be accurate, the method requires, in

addition to the mean-based perturbation, the deterministic re-computation/

correction of the response value at the most probable points. For further

improvements, more perturbations may be required around the most probable

points (see Section 3.6). In general, these most probable points are

different for each response variable in the structure. For example, the most

probable points for _he stress at node I may not be the same as for the stress

at node 10.

In probabilistic structural analysis, it may be necessary to generate

probability-based solutions for the entire structure under analysis. One

reason is that the sub-crltical _re_s identified from the conventional
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deterministic solution may becomecritical, from the probabilistic ooin5 of

view, if the areas are subjected to more uncertainties in loads, material
properties, geometries, etc.).

A useful probabi!istic solution, in contrast to the deterministic

solution, is the responses (e.g., stresses) at all nodes at selected

probability of exceedance levels. To generate the field solutions, it may be

extremely time-consuming to perform "full" NESSUSprobabi!istic analysis for

"every" response variable because each response variable requires its own

perturbation. Therefore, it is important to develop a strategy to obtain

approximate probabilistic response field without having to solve each response
variable independently.

To solve the above field problem, work has been initiated to formulate an

estimation strategy based on the most-promable-point-locus concept [4]. A

preliminary solution for the field problem will be discussed in the following

paragraphs. More detailed study of the field problem is in progress. A

computer program has been written to study and test several strategies. The
goal _s to investigate strategies and make recommendations for the code

implementation.

As a first approximation, the field's response can be madeusing the mean

value first order (MVFO)database at the meansolution. This technique may be

used to identify regions of greatest concern (high probability of exceedance)

in the structure. However, high accuracy for the probability of exceedance

throughout the entire field cannot be obtained for highly-nonlinear response
surfaces using only the MVFOdatabase.

However, if the response variables are statistically correlated within

the regions of concern, it may be possible to predict or estimate the regions'
field response based on a small number of accurate solutions for the
"critical" response variables.

A sample demonstration was seleczed to study the response field

problem. The example consisted of a "flx-free" bar is ,subjected to an axial

force. The bar has two elements with Young's modulus E! and E2,

respectively. If we assume that EI and E2 are mutually independent random
variables, the longitudinal deflections constitute a response field that is

nonlinear in the random variabies. Based on a detailed FPI study of this
example, the following preliminary conclusions were reached:
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(a) The correlation between any two response variables, measured by the
correlation coefficien_ (ranging from - I to + l), can be estimated using
the mean-value solutions.

prea_cted _ro the(b) Reasonably good probabilistic solutions can be '" _ m
solution of one response variable to the other, provided that the
response variables are reasonably well-correlated (e.g., correlation
coefficient > 0.7 or < -0.7).

(c) The quality of the estimates depend on which response variable is used as
a reference or "master" variable. This master response will provide the
commoncomputation points for the computations of the master as well as
the other "slave" response variables. Because the selected points are
the most probable points for the master, naturally the master response
has the highest accuracy. The accuracies of the slaves depends on the
correlation coefficients. In general, the accuracy will decrease as the
magnitude of the correlation coefficient becomessmaller. This suggests
that it is important to select a good reference point. In general, a
master may be selected, based on the MVFOsolution, as the critical
response (e.g. maximumstress) at a selected probability level.

(d) Whenthe correlation coefficients becomefar from unity {plus or minus)
between a master and a slave, then a new reference point may be
required. In general, several reference points may be selected after the
meanvalue perturbations.

3.4 The Integrated NESSUS/FPI/Monte Carlo Algorithm

In the NESSUS analysis, the FPI algorithm is being applied at two

levels. At the first level, the NESSUS/FPI code generates probabilistic

output using the established response function established based on the NESSUS

database. At this level, NESSUS/FPI is accurate relative to the accuracy of

the response function. At the second level, which is most critical to the

NESSUS accuracy, the FPI algorithm directs the _EM module to "move" to other

perturbation centers (the most probable points generated from NESSUS/FP[).

The first level is always efficient because the response function is

explicitly defined. At the second level, however, finite element solutions

are required to define the response function (i.e., the response function is

implicitly defined), and the computation time becomes dominant.

The NESSUS Monte Carlo algorithm is applied as an _iternative to the

NESSUS/FPI only at the first level. The major reason is, based on the result

of the studies of the Monte Carlo methods (Section 3.2), it appears that it is

practically impossible to perform Monte Carlo simulation by actually

generating a "sufficient" number (e.g., thousands or more) of FEM solutions.

The advantage of inclucing a Monte Cario module is that Monte Carlo

simulation has the capability ,_f eroviding exact solutions (as the number of

39



samples becomeslarger) and involves less potential numerical/convergence
problems than the NESSUS/FPialgorithm. Therefore, the Monte Carlo module can

be used for independently checking the NESSUS/FPIresults.

it is planned that the Monte Carlo module will be independent in the
MESSUSsystem and that this module will be controlled by the PFEMmodule. The

users will have the options of selecting the Monte Carlo or the NESSUS/FP[
solution type.

BecauseMonte Carlo simulation will not be applied to generate the FEM

solutions, the accuracy of the NESSUSwill rely on the FPI algorit_ (applied
at the second level). To avoid gross error, a strategy is described in the

following paragraphs which suggest that "large" perturbation solutions can be
generated to fit a response surface.

In applying the FPI algorithm, there is a possibility that the
established (up to second-degree polynomials) response surface do not

represent very well the actual response surface. Originally, the FPI

algorithm required only good fit of the response surface in the neighborhood
of the most probable point. In other words, only "small" perturbations are

required. However, it is not impossible that the response surface may require
higher than a second-degree model for its accurate description, or that more
than one local most probable point exists for the surface. Please note that

this is based on theoretical considerations. It has been demonstrated that

FPI provides high accuracy for all the validation problems performed, even
with only linear surface approximations.

To provide the analysts with more confidence, "large" perturbation

solutions can be generated so that the solution points cover a "wide" range.
If there are no significant differences in the solutions, then there is more

confidence that the solution, based on the lower-order response surface, is

correct. If the results show significant differences, indicating that the

response surface cannot be modeled adequately by a second-degree surface, then

a more detailed analysis must be considered. A possibl_ solution is to
generate a higher-degree response surface and then use the Monte Carlo

program. Note that after the regular MESSUSanalysis, someprobability
information is already available; therefore, the higher-order effect needs to
be considered only for those significant random variables.
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3.5 Non-normal Random Variables - NESSUS/PRE

The NESSUS/PEE module was origina!iy designed to solve prob!ems involving

statistically correlated normal rancom variab!es. The PRE module generases a

transformation matrix, [7], using the covariances of the correlated variabies,

such that

[y] = [T)[Z] (3.5)

where

[Y] = a statistically correlated normal vector, and

[Z] : a vector of un-corre!ated normal

The distributional input data requires only mean and standard deviation. The

output of the NESSUS/PRE code includes the [T] matrix, which is reGuired for

the NESSUS/FEM input data. The PRE module has been tested successfully in a

number of validation problems (see Section 6.0).

For a correlated normal vector of random variables, the NESSUS solution

procedure is straight-forward mainly because PRE is a totally independent

module. The extension of the correlated normal model to the correlated non-

normal model is based on a methodology developed for the PSAM project [2].

The procedure is more involved and requires additional input and subroutines

in the PRE and FEM modules. During the last year, several strategies,

including the use of the JESSUS/EXPERT, have been investigated. The final

structure has been defined and will be implemented in the next year code.

Let [X] be a vector of correlated, non-normal variables. The input of

the PRE module will be modified so include several distributional types

(lognorma!, Weibull, etc.). A subroutine wi!l be added to the PRE module to

transform [X] to [Y] using a transformation [2] abbreviated as

x : f(y) (3.6)

where x and y are the elements of [X! and [Y], respectively. An "equivalent"

covariance matrix for [Y] wi!! be generated and then used to generate IT].
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In the FEMmodule, for a perturbation in z (element of [Z]), [Y] is

computed using (3.5). An additional subroutine will be added no transform Y

to X using (3.6).

3.6 NESSUS Probabi!istic Solution iteration A!_orithms

The basic probabilistic analysis algorithm for the NESSUS has been

developed [2] and validated using a number of problems (Section 6.0). For

constructing the entire cumulative distribution function (CDF), the algorithm

has proven to be effective. However, the current procedure is noc

satisfactory if the analysts need only one or a few points on the CDF curve.

To optimize the iteration procedure, two algorithms, one for specified

probability levels, and the other for specified response levels, have been

formulated to be used in the PFEM module. The first algorithm (for user-

specified probability level) is illustrated in Figure 3.2 using validation

Case 3 (see Section 6.0 - beam natural frequency). The procedure is as

follows:

(a) Select a probability level.

(b) Compute the most probable point using the MVFO method.

(c) Recompute the response at the most probable point. (Note: the solution

is called the advanced MVFO, or AMVFO solution)

(d) Conduct NESSUS perturbation around the most probable point. (iteration

around the most probable point)

(e) Go to (b) and repeat the process until response value converges.

To implement the above procedure, the NESSUS/FPI code has been modified

to solve the above step (b) for any user-specified probability !eve!. The

entire solution requires the PFEM module to interface the FP[ and the FEM

modules. It is expected that the solution should converge in a fast rate. In

the present example, an accurate solution is obtained with the AMVFO method,

i.e., no iteration is required.

The second algorithm (for user-specified response _evel) is illustrated

in Figure 3.3 using the same validation case. The procedure is somewhat

complicated but is highly efficient in minimizing the NESSUS/FEM

computations. The procedure is as follows:

(a) Using the MVFO method, construct CDF curve using the _JESSUS/FPI code to

get the intercept and the s!ooe at the 50% probabiii_y level.
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(b) Select a response value (e.g., frequency : 320 Hz).

(c) Compute the corresponding point on the MVFO solution curve (i.e., point i

in Figure 3.3) and compute the mos_ probable point using the MVFO me_hoC.

(d) Recompute the response at the most probable point (i.e.. locate point 2

in Figure 3.3).

(e) Use point 2 and the information from step (a) to fit a quadratic curve.

Use this curve to predict the probability level at the specified response

level (i.e., locate point 3 in Figure 3.3)

(f) Compute the corresponding MVFO response for point 3 (i.e., find point

in Figure 3.3).

(g) Compute the most probable point at point a and use this point as a

starting point for iteration.

(h) Start iterations about target response value. Iteration stops when the

probability level converges.

The implementation of the above procedure requires the use of the PFEM

module to integrate FPI and FEM modules. Because of the quadratic curve

fitting scheme, it is expected that the solution should converge quickly. In

the present example, the curve-fitting solution point (point 3) falls almost

exactly on the AMVFO curve indicating the effectiveness of the quadratic

fit. Note that point 3 in Figure 3.3 requires only mean-perturbation and an

additional FEM deterministic solution.

3.7 Confidence (Error) Bounds Estimation

The NESSUS probability estimation algorithm described in Section 3.5 has

assumed that the statistical distributions of the random variables are

known. When the distributions are not certain because of the limited s_p!es,

the PSAM approach is to model the distribution parameters (mean, m, and

standard deviation, s) as random variables, and then establish the

distribution of the response CDF for specified response values. [2]

Consider an input random variable X. m and s are modeled as normally

distributed and lognormally distributed variables, respectively. Given a

sample with size n, the COVs (coefficient of variation = standard

deviation/mean) for m and s are [2]: \

Cm = CxI/ n (3.7

Cs : III 2 (n-l) (3.8)
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WhereC., is the COVof _he inou_ random variable X Cm and C_ are the
..

COVs of m and s, respec_!vely.

The NESSUS/FPI code has an option to compute confidence bounds. The

extra input are Cm and Cs for each X. The output are the upper and lower

bounds that contain 90% and 95% of the probability. The method for computing

the bounds is a combination of the FPi method and the Monte Carlo

simulation. More specifically, the response CDF (now becomes a random

variable) is computed using FP! method for every randomly generated m and s

sets [2].

A validation problem was so!ved using validation case 5 - Rotating Beam

First Modal Frequency (see Section 6.0). The COV data are listed in Table 3.i

where n = 20 was assumed for a!l five input variables. Figure 3.4 shows

so!utions at three frequencies using the AMVFO method.

Table 3.1

Data for Confidence Bounds Example

(n:20; simulation sample size : 5,000)

Young's Modulus

Length

Thickness

Width

Density

Cx Cm Cs

0.10 0.02236 0.1622

0.05 0.01118 0.1622

0.05 0.01118 0.1622

0.05 0.01118 0.1622

0.05 0.01118 0.1622
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4.0 NESSUS/EXPERTSYSTEMCODEDEVELOPMENT

4.1. Summary

4.1.1. Chan_e of Aooroach

As stated in last year's annual report, the type of knowledge that

must be embodied in NESSUS/EXPERT fits, in a fairly straightforward manner,

the production rule knowledge representation technique. This is convenient

since most expert system building tools support this type of knowledge

representation scheme. The _ain problem, at the start of this effort, was the

lack of such tools that could integrate/communicate extensively with a system

outside of its own environment. NESSUS/EXPERT requires integration with

FORTRAN, so some time was spent searching for an expert system building tool

written in FORTRAN. Consideration was even given to developing one for this

project. However, due to the limitations of standard FORTRAN-77, especially

the lack of recursion, the undertaking would not be trivial if a truly useful

tool was to be developed. Thus, the tool called OPS5 was selected because of

its ability to at least access the Lisp environment, and because it ran on a

DEC VAX.

Near the end of the 1986 calendar year, DEC began to market a

version of OPS5 written in Bliss that could access the non-Lisp environments

on the VAX (including FORTRAN). Since that time, vendors have progressed

towards offering some tools that can access non-Lisp environments, mainly

because the too! is not written in Lisp, but a more conventional progra_u_tng

language - usually C. One such tool is CLIPS.

As a result of the emergence of such tools, some time at the

beginning of the 1987 calendar year was spent analyzing the effects of

changing tools in the middle of the project. A port from the public domain

version of OPS5 to the DEC OPS5 was made so that the interface to FORTRAN

could be assessed. At the sm_e time, a re-assessment of NESSUS/EXPERT was

made and its functionality was divided into areas that _hould use rule-based

vs. FORTRAN-based methods of implementation. The division was based not only

on required functionality, but also on efficiency issues with the result being

that the rule-based portion would perform all of the higher-level decision

making and consistency checking between keywords while FORTRAN would do all of

the lower-level checking required on the parameters and data associated with a

single keyword.
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Such a division cf capabilities required an extensive ability to

pass information back and forth between the rule-based portion of the system
and the FORTRANcode. This _mount of integration was not handled easily or

efficiently in DECOPS5,so CLIPSwas examined more closely.
At the same time, the flow of control and menu interface

implemented in NESSUS/EXPERTwere examined in detail to determine their
validity and appropriateness. As a result of this analysis, it was decided

that certain improvements could be made. The main improvement required some

redesign of how the menusworked and what choices should show up on them.
Due to the fact that NESSUS/EXPERTwas undergoing a major change

in design, that CLIPS is public domain, portable, and readily accessible from

NASA,and that CLIPS could fairly easily and efficiently handle the

integration issues, it was decided in March 1987 to reimplement NESSUS/EXPERT
in CLIPS and FORTRAN.Though this design philosophy has required an extensive

amount of FORTRANcoding, thus slowing development considerably, it has

created a highly modular, efficient, and robust user interface to the NESSUS

code.

4.1.2 The CLIPS Language

CLIPS is a production rule-based, forward chaining, expert system

building tool written in C by a group of individuals at johnson Space Center

[I]. It was developed to meet the needs of systems like NESSUS/EXPERT where

speed and integration issues are key to the success of the system. It is the

only tool we are aware of that can so completely integrate with other

programming environments, including FORTRAN - the prograrr._ing environmenb of

interest in this effort.

In many ways, CLIPS resembles the expert system building tool used

previously in this effort, OPS5. Both use production rules (IF-THEN

statements) as their primary means of knowledge representation. Both are

forward chaining. That is, they start by gathering data and then make

inferences based on this data rather than starting wit_ an inference and

trying to find data about the problem that will support that inference. They

both use the Rete algorithm for efficient encoding and searching of the

production rules in the knowledge base_

In other ways CLIPS differs from OPS5, both in power and

functionality. CLIPS provides a much less powerful way of representing data

about the domain. It works simply on pattern matching sequences while OPS5
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has an actual, though limited, frame representation capability. CLIPS
performs conflict resolution using programmer-defined salience factors while

OPS5 provides a very nice, implicit method for doing this. On the other hand,

CLIPS allows a means of completely integrating the FORTRAN code with the CLIPS

rules. In the end, this functional capability out-weighed the disadvantages

with respect to power.

4.1.3 The CLiPS/FORTRAN Interface

As stated earlier, the division of work between CLIPS and FORTRAN

resulted in separating the higher-level decisions and checks between sets of

keywords from the lower-level checks and verifications of parameters and da_a

within a single keyword. CLIPS rules were to be used on the former while

FORTRAN routines were to be used to implement the latter. To properly handle

each keyword, NESSUS/EXPERT requires a set of FORTRAN routines, C-interface

routines, and CLIPS rules.

The integration of CLIPS and FORTRAN can be implemented with

either CLIPS or FORTRAN as the "main" program. Development of the system so

far has been done with CLIPS as the main program. This arrangement allows for

CLIPS to be run in interactive mode, thus providing easier access to CLIPS

debugging tools. The main program can easily be changed to FORTRAN if it

becomes desirable to do so. Control and communication between CLIPS and

FORTRAN is implemented via direct calls to FORTRAN routines or calls to C

interface routines which, in turn, invoke the desired FORTRAN routine. The

latter is necessary only if parameters are to be passed from CLIPS to

FORTRAN. The process of passing parm_eters to FORTRAN from CLIPS requires the

following steps:

I. A C interface routine must be written for each FORTRAN routine that is

called with parmmeters from CLIPS. These C interface routines are

simple, the length varying according to the n_ber of parameters being

passed. They convert the parameters passed from CLIPS into the C format

and then invoke the desired FORTRAN routine.

2. A line of code must be added to a CLIPS routine cailed USRFUNCS for each

C and FORTRAN function called. This line is simply a call to a function

called DEFINEFUNCTION with the function name as one of its parameters.

3. To receive the parameters passed from CLIPS into the FORTRAN routine, the

parameters must be converted to FORTRAN data types via a call to a CLIPS
function called LOADC.
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To create objects in the CLIPS world From within a FORTRAN routine, {i.e.,

passing parameters from FORTRAN back to CLIPS) the data must first be

converted to a CLIPS data type and then given to CLIPS. This is accomplished

via calls to two CLIPS functions, STOREC and ASSERT.

4.1.3.1 The FORTRAN Side of the Interface

FORTRAN is used to read-in data files or information

provided by the user interactiveiy from the keyboard. Based on the keyword

that the data is associated wi_h, the FORTRAN routines check for the

appropriate number and type of data in each position on each line. Much of

this knowledge was acquired from the MHOST Users' Manual [2]. Approximately

seven FORTRAN routines must be written for each keyword.

For example, suppose that the user wishes to input da_a

associated with the keyword _ELEMENTS. A top-level FORTRAN rcutine is used to

initiate getting the data, either from a file or directly from the user.

Based on where the data is coming from, one of three other routines is then

used to actually read-in the data and check it for consistency with respect to

the requirements of the keyword in question. Little checking is required for

system file input because it is assumed to be correct, having been generated

by NESSUS/EXPERT at some previous point. Hcwever, user file input or manual

entry would require certain verifications. In the case of *ELEMEMTS, checks

should be made to ensure that the first parameter is a legal element type, and

that the subsequent lines of data start with an integer element number

followed by the correct number of node numbers for that element type.

Formatting restrictions, such as the maximum number of nodes that can occur on

a single line (15 in the case of *EEEMENTS) is not checked for here. Rather,

the FORTRAN routine that uses this data to create the data deck contains such

knowledge.

Salient features of the data are then asserted by FORTRA_I

into the CLIPS environment via an assert routine. Other routines are needed

to get information back from CLIPS, to invoke a help file related to the use

of the keyword, and to write the data to a temporary system file

and to a NESSUS-readable data deck.

Thus, FORTRAN is Used to do all of the complex type

checking on all data entered into the system related to a single keyword.

CLIPS is not capable of doing certain kinds of type checking, such as integer

vs. real, and is much slower at reading large amounts of data into memory.
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Though coding such routines in FORTRANrequires more time and effort, cnce

coded the resulting routines are more efficient and effective in this
situation.

_.I.3.2 The CLIPS Side of the Interface

Though FORTRAN reads all of the data into memory, none of

this information is available to CLIPS without an explicit assertion by the

FORTRAN code into the CEIPS environment and a set of CLIPS rules to accept the

assertions. Thus, for each keyword there is a set of CLIPS rules that takes

the data in from FORTRAN and-enters the values into CLIPS data structures.

This helps CLIPS keep track of what NESSUS/EXPERT does and does not know about

the current problem so far. It also provides the system with the needed

information to continue guiding the session (discussed in Section _.I._).

Thus, for example, when data about the element types

through *ELEMENTS are read-in by FORTRAN, FORTRAN asserts into CLIPS only the

total number of nodes for each element type. CLIPS then takes this data and

stores it for use during consistency checking between keywords. Other

information about the elements may need to be brought into CLIPS at a later

time to support certain consistency checking. This will depend on the type of

consistency checking that is required and will have to be determined on a

case-by-case basis. The goal is to minimize the amount of data that must be

passed into CLIPS since if most of the data ends up getting passed, then all

of it might as well be read-in, thus slowing the system down.

_.I.4 NESSUS/FEM Interface

The NESSUS/FEM module is a complex finite e!ement code geared

toward solving problems with probabilistic data uncertainties. The code uses

a newly developed, mixed type formulation, resulting in a new, different

computational technology. In order to make this new technology accessible to

the users unfamiliar with the code and its theoretical foundations, NESSUS/FEM

must be interfaced with an additional code. The role of this new code wili be

to simplify the use of NESSUS/FEM and to accumulate knowledge on the

appropriate usage of the code for various types of problems.

The NESSUS/EXPERT module will serve as an interface to NESSUS/FEM

for deterministic analysis. In the complete probabilistic analysis conducted

with the aid of NESSUS/FPI, a new module (PFEM) will be used. Its role will

be to carry out the algorithms of the probabi!istic finite e!ement method and

to assure proper information exchange between NESSUS/FEM and NESSUS/FPi. The
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PFEMmodule will be discussed in Section 4.1.6. The new design concept of

NESSUS/EXPERTis described in the following subsections.
2.1.4.1 The Mew Design Concept

The new design concept for the NESSUS/EXPERT system

centers around the role of problem database and uses a structured

interrogative-interactive mode of operation. The problem database stores all

the information about structural problems to be solved, finite element model

to be used, random variables to be accounted for, as well as the logistical

information about the status of the problem solution process, i.e., if the

basic finite element model has been defined, or if any NE3SUS/FEM analyses

have been run, etc. The information saved in a form of various status

indicators, switches and options in the problem database lets NESSUS/EXPERT

guide the system user through the solution process by presenting him/with menu

selections suitable for a given stage of solution process. For example,

probabilistic descript of a problem is not necessary until the determinsitc

part of a problem is completed, consequently, the user is not asked to provide

probabilistic problem description until it is really needed.

The advantage of this approach lies in the systematic,

orderly way the problem is solved. This leads to simplifications in the way

the user has to interact with the system (he/she always faces menus that are

relevant to the stage of solution at hand, not those that have already been

used or those that are not important yet. The new approach markedly

simplifies the process of utilization of accumulated knowledge. The

information about suitable problem dependent option and parameter selections

(determined by accumulated experience) can be conveyed to the user at the most

appropriate time, and it can be triggered only as necessary, without

overloading the user with excess information.

Also, this step-like approach simplifies internal

operations of the system, like model consistency checking, input of user data

or preparation of NESSUS/FEM input decks. In this new _tructured

interrogative-interactive approach, NESSUS/EXPERT is always in better control

of operations, it does not need to be directed as to what to do next or what

data to expect, but it governs the solution process, with the attendant

decrease of code complexity and the decrease of need for a!l encompassing

consistency data, parameter and cp_ion checking of totally unstructured

interaction operation, relying only on user input for control of the solution.
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_.I._.2 An Examole Interaction

The prototype version of NESSUS/EXPERT does not have any

finite element generation facility. It is assumed that the basic model is

normally generated using one of many available general purpose finite element

preprocessors (PATRAN, MENTAT, GIFTS, etc.) and the gorups of data such as

nodal coordinates, element connectivities, boundary conditions, etc., are

stored in separate ASCII files. The proess of building NESSUS/FEM input deck

using NESSUS/EXPERT then takes on a form of the following dialog betweent he

suer and the program.

The first choice presented to the user by NESSUS/EXPERT

is that of starting anew job or resuming one of the existing ones, whose nmmes

are listed by the system. If a new job is selected, the user is prompted for

a job name and then for the input of the basic model. The basic model

definition can be input by providing names of files containing descriptions of

nodal coordinates, element connectivities, etc., or by specifying those

quantities explicitly. This part of the process is performed in interrogative

mode, the system asking specific question and the user providing explicit

information (e.g., file name with coordinates or a string of nodal

coordinates, etc.). The structural analysis type to be performed is input as

part of the basic model description.

As soon as the basic model is defined, the user may inout

other elements of the problem description, such as material data, loadings,

additional elements of the model depending on analysis type, solution control

parameters, etc. The mode of the input will be identical as for basic model

data. For every category of the input data, the user will be interrogated

only for information relevant for the problem at hand. Also, certain

guidelines regarding the parameter selection will be presented to the user.

The help information will be available onmost menu entries. The "exit/return

to main menu" capability will exist in all themenus of the system, allowing

the user for an orderly completion of the interactive _ESSUS/EXPERT session.

The status of the computational model preparation is recorded in the problem

database, giving the user a possibility to resume operation from the same

stage of the process, at which it was stopped earlier.

Once the full computational medel is defined, the

NESSUS/FEM input deck is submitted for execution (in batch mode) and the

session is completed. The results of analysis are accessible to NESSUS/EXPEET
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through PDBfile. Upon inspection of the deterministic model resulss, the
user can introduce modifications to the model (for example, to improve

accuracy, correct errors, etc.) or he may proceed to define the probabilis_[c

part of the model, and resubmit the modified deck. The process can be

repeated until the user is satisfied with the results of deterministic and

perturbation analyses, whereupona full probabilis_ic analysis using PFEM

module may be initiated.
4.1.5. Geometry Perturbation Module

The geometry perturbation module has been developed for generation

of perturbations of node coordinates for a typical turbine blade finite

element model. The module is oriented for processing turbine blade models

built with NESSUS 8-noded solid elements.

4.1.5.1 Perturbation De_rees of Freedom

The perturbation degrees of freedom have been identified

based on the vast practical experience of Rocketdyne in the area of SSME

turbine blade manufacturing. The identified practicai[y important degrees of

freedom are: volume changes (Figure 4.1) translations, and rotations of parts

of a blade. All the above perturbation degrees of freedom have been

implemented in the module.

The operation of volume change is performed in the gIobal

coordinate system (the coordinate system of the finite element model).

Translations and rotations can be performed either in the global coordinate

the user.
system or in any Cartesian local coordinate system ss=cified by

Changes in nodal coordinates, resulting from operations

performed upon a model, are accumulated until the user decides to cancel

them. This, combined with the capability of storing coordinates of a

perturbed model at any time of processing, gives the user maximum flexibility

in creating different perturbed versions of an original model.

4.1.5.2 Numerical Implementation

Perturbations of a finite elemen5 model are generated in
w

three major stages:

I. The input of coordinates and connectivities of a model from NESSUS deck

and the input of model suD:-eg[on definition from the user. The data from

the NESSUS input deck are currently read in a fixed format (upon
_r_m

• NESSU_,c_-_: da_a _-_integration wlth ' '_ ...._'_ _he tl[ be retrieved _ _ the

problem database). The _cd=: subreg _ defin[%ion to be orovided by the

user consists of the nunoer cf reg:ons in the mode!, their names, and the

first and last element n=mce_s for e';eL'? ,-egion.
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2. The preparation of the auxiliary geometrical database with such
information as node numbersof every region of the model, numbers of
surface nodes and walls, and numbers of surface walls attached to every
surface node. The operation starts with selecting numbers of nodes
associated with every region. Next, the surface walls of elements are
identified for the entire model. It is done by checking if a wall
belongs to more than one element. If the numberof elements containing
the wall is equal to one, it meansthat the wall lies on surface.

Later, all surface walls are sorted by the numbers of regions to which
they belong. At last, the numberof surface walls attached to every
surface node is calculated.

3. The user data input and the execution of requested operations (volume
change, translation, rotation, erase changes, save changes).

Actual changes in nodal coordinates are calculated at this stage.

Despite the significant amount of computations required for someof the

perturbations (volume change), the response time of the module is still
in a reasonable range of up to few seconds, even for the models of large

scale (1500 elements, 2500 nodes). This good computational efficiency

has been achieved by a careful design of the auxiliary database and the

use of such entities as e!ement walls and edges in the surface

identification and normal calculation algorithms.
The concept of dynamic storage dimensioning is used in the

entire code, making it easy for the analyst to change maximumdimensions
allowed inside the code, (it requires changing of appropriate parameters in

the main module of the code). The entire code has been written in FORTRAN

77.

4.1.5.3 Mode of Ooeration

Yhe code is designed to be run interactively. All the

necessary information about required input is given to the user through

prompts.

The volume change operation requires the following input from

the user:

I.

2.

.

p

region number to which the operation is applied,

amount of volume change, measured by the length of a vector normal to the

blade surface (+ volume increase, - volume decrease),

coordinates of two points defining an auxiliary axis (Figure 4.2),used

for defining the surfaces subjected to coordinate changes.
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4. the value of the minimum angle allowed between the auxiliary axis and any

of the element norma!s, (if the angle between an element normal and the

the axis is smaller then the minimum angle, then the nodes cf the element

are not allowed to move in the normal direction).

The operation of translation requires the following input

from the user:

I. region number to which the operation is applied,

2. coordinate system in which the operation is performed (if a local

coordinate system is selected then the coordinates of three points

defining the system ar_ to be input),

3. the values of translations in X, Y, and Z directions of the selected

coordinate system.

The operation of rotation requires the following input from

the user:

I. region number to which the operation is applied,

2. coordinate system in which the operation is performed (if a local

coordinate system is selected then the coordinates of three points

defining the system are to be input,

3. the axis number of the coordinate system, about which the rotation is to

be performed,

4. the value of the rotation angle (in degrees)

4.1.6 NESSUS/PFEM Module

The NESSUS/PFEM module has been designed as a batch mode

program for the Probabilistic Finite Element Method (PFEM). The principal

function of the program is to perform complete probabilistic analysis of the

problem using both the NESSUS/FEM and the NESSUS/FPI modules. The function is

accomplished by repeated alternate executions of both modules, accounting for

various types of probabilistic analysis and/or possible numerical problems

with perturbation analysis. The batch mode of operation has been selected

because of long run times of NESSUS/EXE module for computational models of

practical size. The input data for the NESSUS/PFEM module is prepared during

an interactive session with NESSUS/EXPERT.

Detailed descriptions of the NESSUS/PFEM module follow.

4.1.6.1 Tvoes of Probabilistic Analysis

There are two basic types of prcbabilistic analysis available

in the PFEM module. The first one, named global, evaluates the global
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response of a performance function (stress at a point, at various levels of

probability). In other words, it gives an overall variation of the

probability versus the performance function levels, over the range of
practically attainable performanc function values.

The second type of analysis is namedlocal, since it is

concerned with more "local" behavior of the performance function. There are

two kinds of local probabilistic analysis: where the performance function

level is calculated for a given probai!ity level, and where the probability
level is calculated for a specified value of performance function.

The global analysis is performed in two basic steps. The

first step consists of global mean-value-first-order (MVFO)analysis using the

NESSUS/FPIcode and the FEMperturbation data. In this step, design point

coordinates are calculated at 9 ÷13 probability levels covering the range of

practical interest (0.00001 < p < 0.99999). In the second step, the
NESSUS/FEMcode is used to calculate the performance function values for

design point coordinates calculated in the first step. It is assumedthat the

probability levels corresponding to design points are accurate and the

performance function values calculated in the second step constitute a final
solution (Figure 4.3). No iteration perturbations are performed at the final

probability performance funciton levels. Practical experience showed that the
improvementof the solution is small in such situations so that the more

accurate, but also more expensive, iterative approach is used only for local
analyses.

The local analysis for specified probability level utilizes

the newly developed FPI code capability of calculation of performance functicn

and design point values for a given probability value. The algorit_ for this
type of analysis starts with MFVOFPI run to determine the design point

coordinates and performance function value for specified probability level.

The subsequent recomputations of performance function and perturbation

analysis around the design point in NESSUS/FEMis used _o iterate for accurate

value of performance function (Figure 4.4).

The local analysis for specified performance function value

is more complex. The first step of the algorithm evaluates a crude
approximation to the probability level and design point coordinates

corresponding to specified performance function value, using the MVFOFPI

run. A more refined approximation to the probability !evel and design point
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coordinates is obtained by recalculating the performance function (MESSUB/FEM)

at a previous level of probability and using quadratic interpolation. Once a

good approximation to the design point coordinates is found, iterations using

perturbation (FEM) data about that point are used to locate the final solution

(Figure 4.5).

In the prototype version of the PFEM module only the global

analysis is currently implemented.

4.1.6.2 Transfer of Information Between FEM and FPI Modules

There is a lsignificant transfer of information between the

FEM and FPI modules of NESSUS in the process of probailistic analysis. The

NESSUS/FEM module provides the values of performance function: stress, strain,

displacement frequency, etc., for specified fixed values of random variables

(geometry, material, loading parameters). Also, the FEM module provides

information about success or lack thereof in the solution process, which

information is later used in appropriate corrective actions. The MESSUS/FP!

module provides the values of design point coordinates (values of random

variables) and their corresponding probability levels, along with their

estimated performance function values.

The above information is transferred between the modules in

form of files. The output from NESSUS/FEM is stored in the perturbation

database (file PDB). The NESSUS/FPI output is passed to the PFEM module

executive through a coded file with extension FPO. All of the files passed

within PFEM have a common first part of filen_e and are treated as a part of

Problem Database.

4.1.6.3 Interaction with Database

The PFEM module is designed in such a fashion that it

receives very little data directly from the NESSUS/EXPERT code. The data

passed to PFEM is limited to a few control parameters, defining type of

anlaysis, identifying random variables and performance functions, etc. The

bulk of input to PFEM is contained in the Problem Database. The information

stored here is used to assemble both NESSUS/FEM and NESSUS/FPI input decks.

On the other hand, all the intermediate problem data used by PFEM, as well as

the final results, are also stored in the Problem Database. This arrangement

makes it possible for NESSUS/EXPERT to access the status and the resu!ts of

the analysis and present them to the user.
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The interaction of the PFEM module with Problem Database is

very extensive. The complete description of the finite element model aiong

with random variable definitions are used in PFEM to build various perturbed

variable models for NESSUS/FEM. Results of the FPI analyses, in terms of

design point coordinates (and corresponding probability levels) are stored in

Problem Database for later reuse in more accurate estimates of performance

function values. Generally, all the information obtained in the course of

analysis that is important from the point of view of further analysis

(essential intermediate results and experience gathering (computational

process efficiency measures), is saved in the Problem Database for later

access.

2.1.7 NESSUS/FPI Interface

Nothing has been done on this portion of NESSUS/EXPERT to date.

4.2 Current Efforts on NESSUS/EXPERT

At the end of FY87, the initial NESSUS/FEM interface in NESSUS/EXPERT was

nearing completion. Another month of effort will result in a prototype

system ready for evaluation. The system will know about approximately 60

keywords used to run NESSUS/FEM and will have a small amount of knowledge

acquired through the experience of running NESSUS/FEM. The experiential

knowledge will grow for the duration of the project. This will involve

maintaining records or experience gained from using NESSUS/FEM and embodying

as much of the experience as possible into CLIPS rules.

After completion of this initial NESSUS/EXPERT for deterministic

analysis, efforts will turn to the development of the interface for the

probabilistic portion. A basic design concept should be agreed upon before

implementation begins. The plan is to have a completed version of the
_V

probabilistic portion of NESSUS/EXPERT during the third quarter of _88. The

system will then be distributed for evaluation as will be done with the

deterministic portion.
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5.0 NESSUSBOUNDARYELEMENTCODEDEVELOPMENT

5.1 Summary

This section describes the development of a boundary element method (BLM)

formulation for probabilistic stress analysis. The BLM contrasts with domain

methods such as finite element method for linear problems by the fact that the

governing integral equations (called the Boundary Integral Equation or BIE)

are expressed over the boundary of the body [1-3]. The essential feature of

the boundary element method is the availability of singular (fundamental)

solutions of the governing eq=ilibrium equation. In principle, the

probabilistic boundary element formulation requires the solution of stochastic

equilibrium equations, which does not appear to be available for a general

case. The approach used herein is to extract the probabilistic results from

the deterministic solution.

For problems with body forces such as thermoelastic and transient

loading problems, a direct transformation of the equilibrium equations to

integral equations over the surface of the body is generally not possible. The

inhomogeneous part of the governing equations will appear as a particular

integral over the domain of the body. Further, to obtain the probabilistic

solutions, the deterministic problem is solved repeatedly for each

perturbation of random variable. Therefore, efficient deterministic BLM

formulations are sought for the current analysis. One of the major features of

the current analysis is that the domain integrals are transformed through

certain approximations such that the resulting BIE is expressed over the

boundary of the domain only.

Further, the probabilistic results are obtained from the deterministic
E__icient algorithms for

solutions through perturbation of random variables. _="

the determination of perturbed solution variables are also discussed.

5.2 Prohablistic BEM Formulation

The governing equilibrium equation can be transformed through the use of

the fundamental solution to integral equations over the surface for

homogeneous, elastic, isotropic bodies in the absence of body forces. For

nonlinear and general body force problems, such a surface transformation, in

general, is not possible. The resulting integral equation will consist of a

particular integral over the domain of nonlinearity or inhomogeneity.
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5.2.1 Governin_ Equations

Consider the equilibrium of an element of a body under

thermoelastic transient loading conditions. Using D'Alembert's principle, the

equilibrium equation can be expressed as

+6 - pE, = OGU.] l (5.1)

where, o., is the stress tensor, b,, is the body forces vector, u,, is the

displacement vector, p, is the density, and superior dot indicates derivative

with respect to time. The stresses are related to strains through the

thermoelastic constitutive relationship [4] as

= ( e)GU Do_z _._t- Ek_ (5.2)

where _ .... is the (temperature dependent) elastic constitutive matrix given in

terms of shear modulus,., and Poisson's ratio, _, as

(5.3)
2Vl.Z 6u6_ t + l_z(6,_61_ +6j_6kl )D,_ = 1 - 2------_

The total strain, e,,, and thermal strain, ft,, are given by

1

_,j = 5(u,., + us.,),

o e6 u = 0:6 u

(5.4)

(5.5)

where, a, is the temperature dependent coefficient of thermal expansion, and,

e, is the change in temperature from unstressed state.

Let us define M such that

e i( e e l
E_, = ,._ U._.j'+/_L:._;

and

0
t2_=t_,-U,

The stress-strain relationship can then be written as

(5.6)

(5.7)

(5.8)_,; = D,,ktE_,t
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Consider an auxiliary field with homogeneousmaterial properties _ , _ and
corresponding constitutive matrix N..... The fundamental solution, _', due co

unit point force, Q:, for the field is well known and is evaluated from

P =6e
_llklll k,lj i

(5.9)

where 6 is the Dirac delta. Let us define an 'initial stress' a',, , asF

(5.10)

where,

G_I /el

(5.11)

Then equation (5.8) can be expressed as

(5.12)

a,, = _,sklg_.t

(5.13)
U, = _,- U I

and u: is given by

i = _ikllli(J 41 k.l

(5.14)

Using the relationship (5.12), the governing equilibrium equation can be

expressed as

(5.15)
_,jk_gk.zi= -b,+ Pg,

Let us define a stress field o_ corresponding to displacement field u_ that

satisfies the inertial part of stresses, i.e.

(5.16)

d = P_i
O ,j.j

and

dj d(_ = _ijkll...[.ic.l

(5.17)

The governing equilibrium equation can then be expressed as

_ ,j.j = -b ,
(5.18)
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where,

d (5.20)u,= _,- u,

5.2.2 BIE Formulation

The classical direct boundary integral equation is obtained by

applying divergence theorem to the product of the equilibrium equation (5.18)

and u_ within the domain n as

which reduces to

where r is the surface of the domain,

point force solutions, L is given by

(5.21)

b,U,ld_
(5.22)

u,, and T=, are displacement and traction

(5.23)

t/4=O/dj/_j (5.24)

and n, is the normal vecto_ at the surface.

The above integral equation (5.22) still contains the domain

integral of the body force vector. Other than thermal, inertial and

inhomogeneity body forces, which have been taken into account already in the

analysis, the only other body force considered in the present analysis is the

centrifugal loading. The centrifugal body force again can be treated by the

procedure described earlier. However, the domain integral due to body forces

with potential such as the centrifugal load can be converted to surface

integrals as described in the next section.

70



5.2.3 Body Force with Potential

The domain integral due to body forces is given by

B 1 = fnU,jb,d.f]

(5.25)

The body force vector due to the rotation of the body about an axis through

the origin of coordinates with an angular velocity _ can be expressed as

_i = _im X m

where x_ is any point within the domain,

(5.26)

(5.27)

_m = -- P@ilk 60 I @klm_l '

and _:;_is the permutation tensor.

Further, the fundamental solution can be expressed in terms of Galerkin

vector, c,,. as

(5.28)
1

U, s = G ,_.k_ 2(l-v) G'_'kj

(5.29)
I

= 6ijr
Gu 8rip

where r is the distance between source and field points.

By substituting equations (5.26) and (5.28) into (5.29) and integrating by

parts, we have

(5.30)

B_=frP,d f

where P, is given in Appendix D (equation D-l). The transformation procedure

described in this section follows previous works given in [5-7].

5.2.4 Numerical Imolementation

The boundary integral equation corresponding to (5.22) at the

surface can be derived by treating the resulting singular integrals

appropriately [1-3]. To solve these equations, the body is divided into

arbitrary boundary elements over which the geometry as well as field variables

are approximated by interpolation functions. Upon the evaluation of the

discretized integrals, the equations can be assembled to form a system of

equations, expressed in matrix form as
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or

where

U_=Tg+O (5.31)

UI - Tu = Ut ° - Tu ° + b (5.32)

0 6 ! d (5.33)

(5.3a)

The solution to the above equations requires knowledge of u_ and _:. These

terms are evaluated by solving previously defined equations as described in

the following section.

5.3 Body Force Interpolation AiEorithm

As described in the previous section, the body forces due to thermal and

transient loadings are transformed to the surface through particular solutions

of the displacement fields of the inhomogeneous equations. The success of the

procedure depends on the feasibility of obtaining particular solutions to the

governing equations.

5.3.1 Thermal Body Force Analysis

A particular solution to u_ can be determined by the solutions of

equations (5.5) and (5.6). i.e.,

Since the solution requires the knowledge of the temperature

field, an assumption is made regarding the temperature distribution. A

convenient way is to represent the temperature field by a function of the form

= =(p)e(p)-- (5.36)

where K(P.O.) is an assumed function, _'{Q.)is an unknown coefficient associated

with point Q,, and summation is implied over subscript m. A solution for the

displacement is obtained by satisfying equation (5.35) as

0 (P)-- (5.37)
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where expressions for K and ot are given in Appendix D (equations D-2 & D-3).

The accuracy of the procedure depends on how well the temperature

field is approximated by equation (5.36). The temperature distribution for the

problems considered in the current project will have a high thermal gradient

at the surface of the body. The global approximation described above may not

adequately represent this variation unless a large number of sampling points

are selected near the surface, which makes the procedure inefficient. One way

to enhance the procedure is to use a different scheme for the near surface

temperature analysis. Let the temperature field be decomposed into two parts,

e = e (_ + e C2) (5.38)

where e"' is a one-dimensional field varying exponentially normal to the

surface of the body as

(5.39)

In equation (5.39), _ is the normal distance (referred to a local coordinate

system constructed at the boundary point) and, L is the distance over -which

this exponential temperature variation is assumed to occur. A displacement

field satisfying this conditions can be derived in terms of a displacement

potential, _, as

(5.A0)

ill _)= _,i

where v is given in Appendix D (equation D-A). The overall displacement

solution is then obtained as

(I)+. (2) (5.41)

where uF' is obtained from equation (5.35) by replacing 0 by e-e"'.

5.3.2 Temperature Dependent Material Properties Analysis

The Inhomogeneity arising from temperature dependent material

properties may be analyzed by a similar procedure. A displacement solution

due to material inhomogeneity can be determined from equation (5.14). Assuming

that _:,may be interpolated by a generalized function, the corresponding

displacement solution is evaluated as

ii(P)= Q , , , (5.42)
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(a" , '(Q (5.43)

where c:,,is given in Appendix D (equation D-5).

5.3.3 Transient Analysis

Transient problems may also be analyzed by the above procedure. In

this report we consider free vibration analysis only and a displacement

solution can be determined from equations (5.16) and (5.17); i.e.

d =__2_,iktUk.lj pU i (5.44)

where _ is the natural frequency. Representing pu, by a generalized function,

a displacement solution that satisfies the above equation can be determined.

u,(P)= p(P)u,(P)= K(P,Q_)@a(Q_) (5.45)

(5.46)

Using kinematic and constitutive relationship, the corresponding traction

solution can be evaluated as

d 2 _ d
(5.47)

where ct, and Hi are given in Appendix D (equation D-6 and D-7). A similar

procedure for problems with constant material density is given in [8,9].

5.3.4 Deterministic Solution AlKorithm

The boundary values of displacements and tractions are obtained

by solving equation (5.32) satisfying prescribed boundary loading.

Substituting the particular solutions for displacements and tractions we have

where the unknown coefficients _'._'.and _' are related to temperature, initial

stress, and displacement fields by equations (5.36), (5.42), and (5.45). The

straight forward approach for determining the unknown coefficients is to

choose Q_ to coincide with the boundary nodes. Matrices corresponding to these
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equations can be made square by collocating at the same number of points as

the boundary nodes. The equations can then be inverted to obtain the following

relationships :

(5.49)

_o FO_
(5.50)

(_'=F'a'

(#d=Fa_ (5.51)

where E'. E' , and E' are defined in Appendix D (equations D-8, D-9 and D-IO).

The system equation is then reduced to

Am_- L = co =( A d :'c - Zd) + TeO + r' c_' ÷ b_ (5.52)

where _ is the vector of unkno,zn boundary displacement and tractions, L is the

vector due to applied mechanical loading, _ is the vector due to centrifugal

body forces , and d.d',l',l' are obtained from matrix manipulation.

Mechanical and Centrifugal Loading Solution Algorithm

For mechanical and rotational loading cases, equation (5.52) can be

reduced to

,A_= L+b

and the solution to this equation is straightforward.

(5.53)

Thermal Loading Solution Algorithm

For thermal loading, equation (5.52) can be reduced to

A x = TeO + Tio i

The initial stress in the above equation can be evaluated from

Oi i

(5.54)

(5.55)

where

- o
Ekl : Ekl-- Ekl

(5.56)

The displacement gradient can be obtained from the derivatives of equation

(5.22). Since the evaluation of displacement gradients requires complete
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knowledge of boundary displacements and tractions, some form of iterative

procedure is necessary for coupling the solutions of equations (5.54) and

(5.55).

Free Vibration Solution Algorithm

For free vibration analysis, equation (5.52) is reduced to

(5.57)

Using eigenvalue extraction rou=ines, the above equation can be solved.

5.3.5 Perturbation Solution Algorithm

The boundary element formulation and solution procedures described

in the previous sections pertain to deterministic systems. The probabilistic

structural response is determined by applying FPI to the sensitivities of

response variables. The evaluation of the sensitivities requiresrepeated

calculation of response parameters due to the perturbation of random

variables. Since the substantial portion of the computational effort is spent

for these evaluations, an efficient algorithm is essential for the method to

be used as a practical solution tool.

The boundary integral equations derived earlier are for the

unperturbed system. The system equation (5.52) can be expressed as a function

of random variables vector _. For quasi-static loading, the perturbed system

equation can be expressed as

d L= db ÷d(T _e)+ (5.58)

LoadinE Perturbations

The randomness of applied mechanical and centrifugal loading will reduce

equation (5.58) to

AL1x= AL ÷ Ab_ (5.59)

' The perturbation solution of the response variable is then obtained by

solving a system of equations with the same matrix as the one in the

determined case. In the presence of thermal loading, equation (5.58) is

reduced to

A,_4x = T°Ae + TiAa _ (5.60)

and equation (5.55) is reduced to
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D)n[ (5.61)

where s[ can be determined from the perturbed displacement gradient equation

corresponding to (5.22).

Geometry Perturbations

The system equations corresponding to geometric perturbations can be

deduced from equation (5.58) as

A_x = _L + _ ÷ J,!_ ÷ _T°e ÷ _T'°' ÷ _ (5.62)

Since the same matrix as before is solved, the solution can be evaluated

efficiently, provided ai, J_, ad, Jl', and _l' can be computed effectively.

Material Properties Perturbations

The change in stress due to changes in the material properties can be

conceived as a form of initial stress (a_). We can define such an initial

stress as

m (5.63)

where _S., is the constitutive matrix corresponding to the perturbed material

properties and

^ _ (5.64)

A system equation can be formed following the procedures described for

thermal ir_omogeneities as

Ax=T_o _ (5.65)

The perturbed equation for the material properties can be deduced from

the above equation as

A_x = T_o _ (5.66)

where _£" may be evaluated from appropriate derivatives of equations (5.22)

and constitutive equation (5.63). Again, as with the temperature dependent

material properties solution algorithm, an iterative procedure is necessary.

For homogeneous bodies, the perturbation algorithm for the material properties

may be simplified such that neither interior displacement derivative solution

nor an iterative procedure is necessary.
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5.4 Status and Future Plans

The effort in the reporting period mostly concerned with the theoretical

development of a boundary element formulation for probabilistic stress

analysis. The computer code for general stress analysis including eigenvalue

analysis was developed from BEST3D code. A limited number of simple test

problems were run using this code. The computer program is yet to be developed

for thermal analysis that includes temperature dependent material properties.

A perturbation solution algorithm is also not incorporated in the computer
code.

The next year effort will mostly cover the completion of the programming

of the algorithms discussed so far and to continue the development of BEM

formulation. For the isotropic deterministic case, the B_M formulation is

mostly complete. An efficient way to evaluate perturbed eigenvalue extraction

is yet to be developed. Further, additional investigation is needed for

efficient geometric perturbation analysis. Some of the analyses may be

simplified considerably for homogeneous bodies. An investigation into using a

simplified procedure for some specific cases will be completed during the next
year.

Only linear problems have been considered in this report. Once the linear

analysis is completed, the computer code will be validated using a number of

sample problems. The code will then be included in the NESSUS framework.

Further, a data base consistent with NESSUS/FEM will be developed for

subsequent statistical analysis. Interface for NESSUS/EXPERT will also be

developed.

Even though the B_M formulation developed here is for isotropic

materials, the formulation for most part can be used for anisotropic

materials. However, a closed form solution for the single crystal anisotropic

material used in this project is not available. To use the algorithm developed

for the isotropic material to anisotropic case, some form of approximate

solutions needs to be developed. The next year effort will also focus on such

development. In addition, approximate nonlinear modeling strategies will be
investigated.
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6.0 NESSUSCODEVALIDATIONSTUDIES

6.1 Overview of Code Validation Efforts

A plan for validating the NESSUS probabilistic finite element code was

included in the PSAM First Year Annual Report (Voi. III, Section 4). The

original plan consisted of nine validation problems. During the last year,

the number of the problems has increased to fourteen (see Table 6.i) to test

other capabilities of the NESSUS code.

Exact solutions, in terms of probability distributions or the probability

of exceedance, have been obtained for validation problems numbers I to 7, 9

and 10. NESSUS validations were successfully completed for this problem set

except for problems 4 and 5. A summary of the validation problems compiesed

in FY '87 and the problems to be completed in FY '88 is listed in Table 6.1.

Note that, except for problem 8, problems to be addressed in the next year are

those which could not be solved using the NESSUS version 2.0. The recently

released NESSUS 2.5 version will be capable of solving problems a and 5

(rotating beam and rotating plate).

The results for the completed validation studies are presented in the

following sections. More detailed summaries of the validation cases are

documented in Appendix A using a "standard format." The standard format was

designed to include all the required input data and information. In addition

to validating the code, a new user can use these problems to gain confidence

that he is using the code correctly.

When closed-form probability solutions are not available, exact solutions

were obtained by using Monte Carlo simulation. The "exact" solutions were

compared with NESSUS results to valicate the code as well as the solution

algorithm.

For each problem, several levels of accuracy were obtained by using the

NESSUS code and the FPI algorithm. As a first step, a mean-based perturbation

database was generated to generate a linear response surface. The result is

called the mean-value-first-order (MVFO) solution.

In the second step, one or several probability levels were selected. For

each probability level, the MVFO solution was then improved by replacing the

center of perturbation (the "deterministic state" in the NESSUS/FEM module) by

the most-probable points (design points) generated using the previously

established linear response surface. The replacement of the deterministic

value was accomplished by using the "MOVE" keyword in the _]ESSUS 2.0 code.
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Table 6.1

STAT_SOF PSAM VALIdATiONCASES

CASE OE_CRIPTiON A_ALYSISTYPE STATUS SCHEDULE

! CantileverSeam S_atic Solutioncomplete Co_piete

Correlated loading (Progress Report 87-8)

2 CantileverPlate Static Solutioncomplete Comolete

Correlated loading (Progress Report S7-10)

3 CantileverSeam Natural.frequency Solutioncomplete Complete

(Progress Report 87-7)

4 Rotating_ea= Centrifugalloading Analyticalsolutioncomplete XFY88

+ Stressstiffening (See 2nd AnnualReport)

NESSUSsolutionrequired

5 RotatingPlate Centrifugalloading Solutionco=plete Complete

+ Stressstiffening (ProgressReport88-I}

6 TwistedCantilever Naturalfrequency Solutioncomplete Complete

Plate (Progress Report 88-!)

7 Plate Correlatedloading Solutioncomplete Complete

(Multiple zones) (Progress Report 88-1)

8 Shell Static Analyticalsolutionrequired Oct. 1987

NESSUSsolutionrequired

CylindricalShell Static Solutioncomplete Complete

(ProgressReportB7-13i

tO NotchedPlate Stress Concentration Solutioncomplete Completed

(ProgressReport87-II)

I! Shell Buckling Solutioncoep|ete :FYB8

NESSUSsolutionrequired

12 Beam Randomvibration Analyticalsolutionrequired ;FY88

(See book by ELI_HAKOFF) NESSUSsolutionrequired

13 CylindricalShell Randomvibration. Analyticalsolutionrequired ZFYSa

Problemsate as #12, except NESSUSsolutionrequired

for cylindricalshell.

(See paperby ELISHAKOFF,

VAN ZANTENand CRANDALL)

14 Plate Randompressurefield Analyticalsolutionrequired _FY88

(See paperby DYER) NESSUSsolutionrequired

INOTE: ProblemNo. 4,11-14not solvableusingNESSUSversion2.0 (JulyI_87)
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The "new" deterministic solution was t_en paired with the "old" MVFO

probability estimates to form the Advanced MVFO (AMVFO) solutions.

The probability estimates were further imoroved by using the perturbation

solutions around the updated point. This procedure is called the "first

iteration." The solution can be further improved by using additional

iterations until the solution (probability level, response value, or most

probable point) converges. However, in al! the validation problems studied,

it was found that, from a practical point of view, the first iteration

solutions were sufficiently accurate. In fact, it was found that even the

AMVFO solutions provided good accuracy for most cases. Therefore, additional

iterations were not conducted. The NESSUS probabilistic analysis algorithm

are described in Refs. [2-2].

In solving the validation problems, user involvement was necessary to

integrate the NESSUS/PRE, the NESSUS/FEM and the NESSUS/FPI modules. This

slowed down considerably the solution process. However, based on the

experience gained through the va!ication studies, an automated procedure has

now being defined to be included in the PFEM module (see Chapter 4.0). It is

anticipated that the user interactions in finding the probability solutions

will be reduced considerably. The validation experience also has helped to

design potentially more effective iteration algorithms as described in Chapter

Validation Results Comoleted in FY '87

6.2.1 Static Analysis of Cantilever Beam (Case I)

The exact solution for the validation problem I was included in

the First Year Annual Report. The problem addressed is a cantilever beam

subjected to static, statistically correlated point loads (see Figure A-I in

Appendix A). Other random variables include Young's modules, length,

thickness, width, base spring and yield strength. The response function

tested was the tip displacement.

The finite element model consisted of 20 Ti_oshenko beam elements.

The NESSUS "mean" solutions of the tip displacement (0.3969 inches) agreed

with the theory (0.L032 inches) within 1.5 percent. In this problem, the

random variables were correlated. Therefore, the first step required that the

NESSUS/PRE module be used to transform the correlated loads to uncorre!ated

random variables.
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In solving this problem, i= was found that _he perturbation range

for the length of the beammust be very small to avoid convergence
instability. The perturbations used _ere 0.001 standard deviation for the

length, and 0.1 standard deviations for the remaining variables.

The probability solution was checked by selecting three points in

the right tail of the distribution (i.e., cumulative probability > 50_). The

MVFO,the AMVFO,and the first iteration solutions are shown in Figure A-2 in

Appendix A. The "exact" distribution shown in the figure was generated using
Monte Carlo simulations with a sample size of 100,000.

Because there is a difference between the NESSUS/FEMsolution and

the theoretical solution, a "calibrated" or "adjusted" distribution curve was

also established by matching the two (NESSUSand theoretical) solutions at the

meansolutions. The adjusted curve provides a more reasonable reference to

judge the accuracy of the NESSUSprobabilistic solution.

By comparing the FPI solution with the adjusted solution shown in
Figure VI-3, it can be concluded that the AMVFOand the first iteration

solutions provide excellent orobability estimates.

The result of this validation problem also suggests that the
"small" numerical inaccuracy in the finite element solution (1.5% in the

problem) may result in significant differences in the probability estimates.

These differences may exceed the errors introduced by neglecting the second-

order terms in the FPI algorithm. In other words, the first-order (i.e.,

using the response surface linearized about the design point) FP[ method may

be sufficient for practical applications. Nevertheless, the NESSUScode has

the capability of dealing with second-order effect by generating more

perturbation solutions and using quadratic response surfaces.
6.2.2 Static Analysis of Cantilever Plate (Case 2)

This validation problem is similar to case I except that the

cantilever beam is changed to cantilever plate. To produce a reasonable

model, the thickness of the beam as well as the magnitude of the loads were

reduced. The response functions considered are the bending stress at the base

and the tip displacement.

The finite element model consisted of 20 shell elements with _2

nodes as shown in Figure A-3 in Appendix A. The NESSUS "mean" solutions were

O.7648 inches for the displacemen_ and 3657 psi for the stress. These values

agreed with theory - 0.7692 inches and 3600 psi, respectively. The

differences are 0.5_ for the displacemen_ and 1.6_ for %he stress.
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For either the displacement or the stress, the Drobabilistic

solutions were checked by selecting two points in the right _ai! of the

distribution (i.e., cumulative probab_!i_y > _0,)

In solving the problem, it was found that the perturbation range

for the length and the width of the cantilever plate must be small (0.01
standard deviations for the length and the width, and 0.1 standard deviations

for the remaining variables) to avoid convergence instability.
The MVFO,the AMVFO,and the first iteration solutions for the

displacement and the stress,, respectively, are shown in Figures A-4 and A-5 in

Appendix A. The "exact" solution shown in the figures was generated by

applying Monte Carlo simu!ation (sample size = 100,000) to the theoretical

solutions.
Because the "smaI!" difference in the stress values between _IESSUS

and the theoretical solution resulted in significantly different probability

estimates, a "calibrated" stress distribution curve was established for

judging the FP! solution algorithm. By comparing the NESSUSsolutions with

the adjusted solutions, it can be concluded that the AMVFOand the first
iteration solutions provide excellent probability estimates.

6.2.3 Eigenvalue Analysis of Cantilever Beam (Case 3)

The goal of the validation problem 3 was to validate the NESSUS

eigenvalue solution algorithms. The problem consisted of a cantilever beam.

The response functions of interest were the first three bending frequencies in

each of the two lateral directions. Exact CDF solutions are ava[lab!e for

this problem (see PSAM 2rid Annual Report).

The random variables selected were: modulus, density, le..g_n,

width and thickness. The mean thickness (0.98 in.) and the mean width (I in.)

were chosen to be approximately equal to tes_ the ability of the code for

identifying closely spaced eigenvalues.

The finite element mode! consisted of 20 beam elements (N_S_US

element Type 98). The NESSUS "mean" solutions of the first six vibration

modes were found to be in good agreement with the theory (neglecting the

effects of rotary inertia and shearing deformations), with differences ranging

from 0.2_ to 2.2%. The accuracy of the perturbation results was judged by

computing the sensitivities of the frequencies with respect to the perturbed

random variables. I_ was fount 5ha_ the maximum error in sensitivities was

6.3% (for width perturbation). A summary of the NESSUS perturbasion analysis

is given in Table A-I of Appendix A.
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In solving the problem, Lt was found that the perturbation range

for the length of the beam musc be very small (0.001 standard deviation for

the length and 0.1 standard cevLation for the remaining variables) So avoid

convergence instability.

Probability analysis results were generated for the first-mode

solution only. However, the results for other modes are expectec to have the

similar accuracy based on the fact that the NESSUS generated sensitivities are

accurate. Figure A-7 in Appendix A shows excellent agreement between the

exact and the NESSUS solutions.

6.2.4 Eigenvalue Analysis of Rotat/ng Beam (Case 5)

Validation problem 5 considers a rotating beam as illustrated in

Figure A-8. There are five random variables: mass density, length, Young's

modulus, thickness and width. This problem tests the centrifugal loading and

stress stiffening capabilities in the NESSUS beam element. The response

functions consider the tip axial displacement and the first bending

frequency. The approximate frequency solution was derived by assuming a

bending mode shape.

In the original test plan, the beam was fixed at the center of

rotation. To represent a turbine blade configuration more closely, the inner

radius (measured from the center of rotation to the "fixed" end of the beam)

was defined to be 4.237 inches. Analytical solutions were revised and used to

generate exact solutions using Monte Carlo simulation (sample size 500,000).

In solving the problem, it was found that the perturbation range

for the length of the beam must be very "small" (O.OOl standard deviation for

the length) to obtain the correct perturbation solution. When the

perturbation range was 1.0 standard deviation, there was no solution

(convergence instability problem) and when the range was 0.1 standard

deviation the generated perturbation result was incorrect, the frequency

increased as the length increased. This perturbation problem is being

investigated. All the key parameters for the eigenvalue perturbation are

included in Appendix A for further testing.

Using the "small" perturbation range for the length, the

probability analysis results were generated. Figures &-9 and A-iO in Appendix

A show very good agreement beL_veen the "adjusted exact" solutions and the

NESSUS AMVFO solutions.
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6.2.5 Ei_envalue Analysis of Twisted Place (Case 6)

The problem definitions and the solution are summarized in

Appendix A. The geometry of the t_isted plate was selected the same way as

one of the test samples described in the paper by Macbain, Kielb and Leissa

entitled, "Vibrations of Twisted Cantilever Plates - Experimental

Investigation." The selected response functions were the firs_ bending and the

first torsion frequency.

A total of 192 shell elements (Type 75 - four-node shell) were

used. The deterministic NE_SUS solutions for the selected frequencies agreed

well with the experimental results (about 4% difference). However, because

the general theoretical solution for the twisted plate is unavailable for

bending, torsion and mixed vibration modes, the validation of the

probabilistic solution is only partially completed.

The "exact'[ solution for the first bending mode was based on the

flat plate solution. For the selected geometry, this solution is reasonable

based on the experimental results which suggests that the analytical solution

can be used to predict, with good accuracy, the frequencies for different

thicknesses. The probabilistic analysis solution using zhe advanced mean-

value-first-order method (AMVFO) as shown in Figure A-13 agrees very well with

the calibrated exact solution (adjusted so that the mean value FEM solution

equals the experimental data). For the torsional mode, it was found that the

flat plate solution cannot be used reliably to predict the results of the

experiment. However, the probabilistic solution was obtained (Figure A-!_)

and can be used to compare with the theoretical solution should it become

available.

6.2.6 Static Analysis Flat Place (Case 7)

The problem definitions and the solution are summarized in

Appendix A. The special feature of this problem is that the loads are applied

to multiple "zones" as illustrated in Figure A-15. In each zone, the loads

are either independent, partially correlated, or fully correlated.

The MVFO, AMVFO, and the first iteration solutions for the

displacement are shown in Figure A-16 in Appendix A. The "exact" solution

shown in the figure was generated by applying the Monte Carlo simulations

(sample size = 500,000) to the theoreCical solutions.

An adjusted exact stress distribution curve was established for

]udging the accuracy of the _iESSUS solution. By comparing the 5iESSUS
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solutions with the adjusted solutions, it can be concluded that the _MVFOant

the first iteration solutions provide excellent probability es=imates.
6.2.7 Static Ana!vsis of Cylindrical Shell (Case 9)

This problem is a cylindrical shell subjected to axisymme_ric ring

loads. Seven random variables consisting of Young's modulus, inside radius,

and five correlated loads were selected. The finite element used was NE_SUS

element Type 153 - a four-node assumed strain axisymmetric element. The

finite element model had a total of 50 elements, and the element mesh is shown

in Figure A-17.

The "exact" probabilistic solution was solved by using Monte Carlo

simulation (sample size 500,000) with the theoretical solution taken from

Timoshenko's "Theory of Plates and Shells." The difference between the

deterministic (based on mean values) NESSUS and Timoshenko solution was 2.2

percent for radial displacement under the load.

Validation results for both the NESSUS/FEM code and the

probabilistic analysis algorithm (FP[) were obtained (see Figures A-18 and A-

19). Note that the validation of the NESSUS/FEM code was based on the FEM

solution, and the validation of the FPI algorithm was based on the Timoshenko

solution. The probabilistic analysis procedure, however, is identical for

both solutions.

The perturbation range was chosen as 0.1 standard deviation for

each random variable. It was found that the NESSUS/FEM solution required very

tight convergence limits for generating accurate Young's modulus sensitivity

data. Also, it was found that this convergence problem can be solved by

increasing the perturbation range to 0.5 standard deviations.

Figure A-18 and Figure A-19 present the MVFO and the AMVFO

solutions. If required, accuracy can be improved by applying the iteration

procedure. However, Figure A-19 indicates that the AMVFO solution is

sufficiently accurate for this problem. Therefore, no iteration solution was

obtained for NESSUS/FEM.

For the NESSUS/FEM solution (Figure A-18), a calibrated "exact"

solution was again used to compare with the NESSUS/FEM solution. Figure A-i9

shows that NESSUS solutions and adjusted solutions are very close, thus,

indicating that the AMVFO solution provides very good probability estimates.
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6.2.8 Analysis for S_ress Concentration Factor (Case 10)

The response function considered was the maximum stress at the

notch of an axially loaded sheet in Figure A-201. The radius of the notch is

defined as _he random variable which has a lognorma! or truncated-normal

distribution. The croblem definitions and the solutions are summarized in

Appendix A. The radius is not a standard input in NESSUS/FEM, however, this

validation case shows that the user can define a geometry parameter as a

random variable by providing proper perturbed coordinate data in the

NESSUS/FEM random variables _etting.

Because the response is a function of one random variable, it can

be shown that, theoretically, the advanced MVFO method should yield the exact

CDF solution. Therefore, the difference between the NESSUS solution and the

exact solution (Figure A-21) is due to the error in the finite element

solution. However, the error is small (about I% in stress). Note that, for

the case where the radius has a truncated distribution, the resulting NESSUS

probability distribution is also truncated (Figure A-22), as expected.

6.3 Validation Plans for FY '88

6.3.1 Summary of FY '88 Effort

The validation cases planned are listed in Table 6.1. The

emphasis will be on dynamic problems and response to random loading.

Descriptions of the planned validation problems follow.

6.3.2 Eigenvalue Analysis of Rotatin_ Beam (Case _)

Va![dation case _ is the s_e as case 5 except that the finite

elements are Timoshenko beam elements.

6.3.3 Static Analysis of She!l (Case 8)

Validation case 8 is a static problem. The main goal is to

validate the general two-dimensional shell (non-axisym_etric) element in the

NESSUS library.

6.3._ Buckling Analysis of Cv!indrical Shell (Case 11)

The random variables will be shell thickness and the applied

pressure. This problem has been solved using the "move" option. Hcwever, the

solution using the NEBSUS perturbation scheme has not been obtained using the

NESSUS 2.0 code.

6.3.5 Random Vibration Analysis of Beam (Case 12)

This problem was described in detail in [I]. A concentrated

random loading defined using a power spectral density function is applied _c a



simply-supported beam. The response of interest is the displacement, and

approximate solutions for _he meanant standard deviation of the response are
available.

6.3.6 Random Vibration Anal';sis of Cvlindr_ca! Shell (Case i3)

This problem is similar to case 11. The structure is a

cylindrical shell subjected to a random uniform ring loading at a sec¢ion of

the shell [5].

6.3.7 Random Pressure Loads on Plate (Case 12)

The goal of thi_ validation case is to validate NESSUS' capability

to solve random pressure field problems. In this validation case, a plate is

subjected to a random pressure field [6].
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7.0 NESSUSCODEVERIFICATIONSTUDY

7.1 Scope of Verification Problems

The purpose of the verification efforts is to apply the Prooabilistic

Structural Analysis Methods (PSAM) to the analysis of actual typical aerospace

propulsion system components. Four components, typical of the hardware found

in rocket propulsion engine systems have been chosen for this application.

They are turbine blade, high pressure duct, LOX post and transfer tube

liner. These components are subject to environments with many random

variables. Detailed discussion of the environments, failure modes and the

deterministic analysis techniques were reported as part of the first annual

report.

A wide range of probabilistic structural analysis tools will be or have

already been implemented in the NESSUS/FEM code. The verification studies have

been tailored such that different areas of structural mechanics are emphasized

on each of the components. This has been done consistant with the primary

design requirement for each component.

The turbine blade analysis concentrates on linear static and modal

frequency extraction analysis. The duct application emphasizes the random

vibration capabilities within the linear dynamics domain. The LOX pest

application involves the use of nonlinear material analysis. The transfer

tube liner application involves material and geometric nonlinear analysis. All

the efforts on the above components analyse various response variables in the

probabilistic domain.

Initial verification efforts concentrated on the accuracy, robustness,

and efficiency of the methodologies implemented in the NESSUS/FEM code.

Several test cases were run using NESSUS/FEM and the results were compared

with results from commercial codes such as ANSYS. The initial studies pointed

the way to improvements in user interface, analysis tools, and element

formulation. Some of the details of these studies can be found in the earlier
P

annual and monthly reports.

7.2 Turbine Blade Random Variables

A high performance, high pressure fuel turbopump second stage blade was

considered for this study. The blade is made of single crystal PW1480

material which has directional properties. The following variables have been
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identified as randomand will be considered for the probabilistic linear

static analysis.

I. Material axis orientation

2. Single crystal material elastic constants

3. Geometry

4. Centrifugal load

5. Temperature load

6. Pressure load

The initial study considering the first three items is reported herein. The

ran_om load variables will be included in the subsequent effort; the

contribution of loading can be analysed by adding the NESSUS/FEMresults to

the existing database.
Statistical data for material axis orientation were obtained from a set

of approximately one hundred blades. For these single crystal blades the

primary material axis was controlled but not the secondary axis orientation.
The statistical analysis of the data indicated a standard deviation of 3.87

degrees for the primary axis orientation. Further, there was no correlation
observed between the primary and secondary axis data. The new blades that will

be manufactured and tested will have both the primary and secondary material

axis controlled. This study considers the material axis orientations, both

primary and secondary, as independent randomvariables each having a standard
deviation similar to that observed in the set of one hundred blades discussed

above. Analysis of data from a small sample of blades where primary and

secondary axes were controlled indicate similar standard deviations. For the

purposes of this study, a normal distribution was assumed.
The elastic material constants were assumedto be functions of

temperature and were introduced through the use of user subroutines in
NESSUS/FEM.The material properties used is reported in the Table 7.1. The

variations in elastic constants in single crystal materials is considered to
be small. A coefficient of variation of 0.025 was used for all the elastic

constants. The standard deviation was assumedto be the sameat all

temperatures.
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Table 7.1

Material Properties for the Turbine Blade Model

TEMP E NU G AEPHA

RANKINE PSI PSI INCH/INCH/R

60 19.95E6 0.376 20.5OE6 2.30E-6
360 18.82E6 0.382 19.3OE6 3.80E-6
530 18.38E6- 0.386 18.63E6 4.65E-6
660 17.61E6 0.389 18.OOE6 5.29E-6

1860 14.79E6 0.395 15.27E6 7.76E-6
2060 13.91E6 0.401 I_.60E6 8.07E-6

Mass density = 0.805E-3 ibf.sec2/in. _

The nature of the geometrical variations in a turbine blade shape is a

function of the manufacturing methods. Procedures have been implemented in

the NESSUS/EXPERTsystem to introduce many types of geometric perturbations to

the finite element model. These include uniform volume increase or decrease,
geometrical translation and/or rotations about somearbitrary set of axes.

For cast and then machined blades such as the one being analysed in this

study, actual measured data indicate that the majority of geometrical

differences from blade to blade occur as rigid body shift and/or rotation

about the stacking axis. Thus, geometrical perturbations as rigid body shifts

of lean, tilt and twist angles have been introduced in this study. That is,
the relative change of the center of mass (CG) with reference to stacking axis

is more critical to stress analysis than the minor profile variation from

blade to blade. Consequently, the lean, tilt, and twist angles have been

treated as random variables (Figure 7.1). The data from a similar set of LOX

blades was used to determine the standard deviations of these geometric

angles. These three geometric angles were converted, through a preprocessor,
into equivalent nodal coordinates and were then input @oNESSUS.

In summary, a total of nine randomvariables were introduced in this

first set of verification study. They are listed in Table 7.2. The study
will be extended in the next phase to include the load random variables of

speed, pressure and centrifugal load.
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Table 7.2

RandomVariable Data for Blade Verification Study

Random
Variable
Number

Description MeanValue Std. Deviation Distribution

I Mat. orien. +0.05236 (rad)
Theta Z

2 Mat. orien. -O.034907(rad)
Theta Y

3 Mat. orien. +O.O82766(rad)
Theta X

4 E Temp.Dependent

5 NU Temp.Dependent

6 G Temp.Dependent

7 Geom.Lean 0.0 (degree)

8 Geom.Tilt O.0 (degree)

9 Geom.Twist 0.0 (degree)

O.O67544(rad) Normal

O.0675a4(rad) Normal

O.067544(rad) Normal

0.4596E61bs/sq.inch Normal

0.00965 Normal

O.46575E61bs/sq.inch Normal

0.1a (deg) Normal

O.12 (deg) Normal

0.30 (deg) Normal

7.3 Turbine Blade Verification Study Results

The finite element model used in this study is shown in Figure 7.2. The

blade is subjected to complex pressure and temperature profiles shown in

Figure 7.3 and Figure 7.a, respectively.

The probabilistic analysis results, considering the nine random variables

discussed earlier, are presented below. The mean-value, first-order (MVFO)

solution consists of one deterministic analysis (at the mean value state)

followed by nine perturbation analyses, one for each random variable. The

perturbation setting of 0.1 times the standard deviation was used to compute

the gradients near the mean values. A NESSUS/POST FORTRAN interface program

is available that will convert the geometry, displacements, stresses and

strains available in the perturbation database into PATRAN readable, neutral

and results files. The NESSUS/FPI module was modified to write the FPI

results data into a PATRAN readable results file. Further, the NESSUS/FP[
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MAXIMUM NODE NUMBERS = 2519

NUMBER OF ELEMENTS = 1456

NUMBER OF ACTIVE D,O.F. = 5946

MAXIMUM PROFILE HEIGHT = 578

AVERAGE PROFILE HEIGHT = 361

_UMBER OF 64 BIT IVORDS = 2846215

NEEDED IN BLANK COMMON

Figure 7.2 Blade Verification Study Finite Element Model Details
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module was modified to process the entire model (2519 nodes) for a given
response variable for the mean-value, first-order method. The results are

presented in the form of graphical contour plots. These graphical plots aid in

an effective interpretation of deterministic, perturbation as well as

probabilistic analysis results.

Effective stress is considered as one the important stress response
variables. The meanvalue of the effective stress for the entire model is

shown in Figure 7.5. This particular blade, because of the coolant flow from

the disk, has steep thermal gradients at the trailing edge of the shank root

and at the shank - platform trailing edge intersection (Figure 7.4). Further,

the trailing edge of the airfoil root has a high critical effective stress.

Three nodes at their critical locations (node 2470, node 2518 and node 817)

(Figure 7.4) were chosen for additional study using the advanced mean-value

first-order method (ADMVFO),in which the design points are shifted.
Based on the MVFOmethod, the standard deviation and coefficient of

variation for the entire finite element model were calculated for the

effective stress and are shown in Figure 7.6 and Figure 7.7. Someof the

larger coefficient of variations occurred in the lower stress regions away
from the critical areas and inside the blade. The inaccuracy of the nodal

stresses computed using the displacement approach near the free edges is also
noted.

Oneof the important results of the NESSUS/FPIprogram is the relative

sensitivity information of each randomvariable amongall the random variables

considered in that particular analysis. This information, called the
sensitivity factor, can be plotted on the model for each random variable as

shown in Figure 7.8 through Figure 7.16. This sensitivity factor, more

appropriately called the probabilistic sensitivity factor, is a combination of

physical sensitivity and uncertainty of the random variable measured by the
standard deviation. In other words, a randomvariable with high physical

sensitivity but with low standard deviation will have a low probabilistic

sensitivity and vice-versa. This provides valuable information regarding the

importance of each randomvariable for the response variable being
considered. It might also be noted that the influence of the random variables

differs in various regions of the blade.

In addition to the sensitivity information using the NESSUS/FPIand MVFO

methods, one can map the probability of exceedence for the response varlab!e
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for many different levels with one single run of NESSUS/FP[. This is

illustrated in Figure 7.17 through 7.19 where the probability of exceedence of

effective stress is plotted. This can be used to quickly identify critical

areas of high stress and identify probable nonlinear material behavior

regions.

After initial processing of the entire model for the effective stress,

three nodes in the critical regions were selected for further processing.

They are node 2470 and node 2518 in the shank root region and node 817 in the

airfoil root region (Figure ].4). The cumulative probability distribution

functions based on MVFO method are shown in Figure 7.20 through Figure 7.22.

The probabilities for the effective stress are also represented in a

different form in Figure 7.23 through Figure 7.25. For the advanced mean-

value, first-order method, the finite element analysis was again run

corresponding to three different levels of probability for the response

variable: l-sigma, 2-sigma, and 3-sigma from the mean. For each level, the

deterministic solution was moved to the design point as calculated by

NESSUS/FPI. The NESSUS/FPI was again used to successfully process this new

deterministic data at the respective design points but using old perturbation

data obtained around the mean values. The results are shown in Figure 7.23

through Figure 7.25 under the legend "ADMWFO" method. It is seen that for the

nodes 2518 and 2470, the difference between the two methods is rather small

indicating the linearity of the response function. However, at node 817, the

differences between the two methods were significant enough to further process

the results. At the 3-sigma level of the design point, perturbations were

again calculated at node 817 for the effective stress and the new

probabilities obtained is reported in Figure 7.25 as ADMVFO with new

perturbations.

Next, the results of radial displacement (x-component) response variable

are presented. The mean value of the response variable is presented in the

form of contour plots Figure 7.26. The standard deviation of the radial

displacement is displayed in the form of contour plots shown in Figure 7.27.

Though the magnitudes of the standard deviations are small, the trailing edge

of the airfoil shows the largest deviation {Figure 7.27). Sensitivity factors

of the radial displacement to the random variables considered are shown in the

form of contour plots in Figure 7.28 through Figure 7.36. The sensitivities

point out that the radial probabilistic displacement at the trailing edge of
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the airfoil is primarily affected by the elastic modulus and the primary

material axes orientation random variables.

A node having the maximum radial ti_ displacement (node 12) was chosen

for further processing. The cumulative distribution function for the t_s

displacement based on the MVFO method is shown in Figure 7.37. The

cumulative probabilities are plotted in a different form in Figure 7.38. The

response variable was further processed using advanced fast probability me_hoc

in which the design points were successively moved to -I sigma, -2 sigma, and

-3 sigma values. NESSUS/FPI was used again to calculate the new probabilities

but with old perturbation data. The results are reported in Figure 7.38 as

the advanced mean-value, first-order method. Further comparison between the

results for the blade verification ana!ysis and validation cases will be made

in the future.

7.4 NESSUS/FEM and NESSUS/FPI Comoutational Exoerience

The NESSUS/FEM code has been executed £n a variety of computers during

the verification, validation and check out phases. As computational cost is

of much interest to the end user some of the computational statistics are

reported in Table 7.3. The details of the blade finite element model used in

the verification efforts are shown in Figure 7.2.

Table 7.3

Blade Verification Study Run Time Statistics

CRAY XMPI-4 I_M 3090 CDC 990 CDC 860 A[EIANT FX-8 I-CU

COS MVS NOS-VE NOS-VE UNIX

A AIB A/B B A

185 280/364 370/460 2890 2ag5

A : Vectorized B = Non-Vectorized

w

NESSUS/FPI 2519 NODES - MVFO METHOD - 330 SECS (CDC990 NOS-VE)

It has been observed that, for this verification problem, the

computational solution times for element formulation, equation solution and

stress recovery phases in NESSUS are comparable to the commercial codes such

as ANSYS. However, the band width optimizer module is inefficient and takes
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an inordinate percentage of the total solution time. For the case of blade

verification, nearly 405 of the computational time for the deterministic

analysis was spent on bandwidth optimization modules. Without sDecifica!ly

tuning the FORTRANcode for any specific compiler on a particular machine, a
20%to 25%increase in computational speed is obtained by vectorizing. For

the blade verification problem, each _erturbation solution took about two to

three iterations to converge. Computation time for each converged

perturbation solution was approximately 50%of the corresponding deterministic
solution. Improvements in this ratio can be expected when the node optimizer

module is improved.
While all the verification studies conducted so far used the strict

isoparametric Type 7 elements, the newly developed element Type 15_ was also
exercised on the blade verification model for se!ected cases. The results

indicated for the Type 154 element the stiffness formulation times were

approximately 2 times that of element Type 7. The stress recovery and

perturbation iteration phases were approximatly 2.5 times more time-consuming

compared to element Type 7. While element Type 154 provided improved results,

improvements in the computational speed for Type 154 modules is recommended.

As part of the preliminary verification process, the mixed iteration technique
was also exercised. It was found that a combination of mixed iteration and

multiple perturbation solutions for the size of the blade verification problem
was considered excessive CPUtime-consuming and, therefore, was not used. The

standard displacement solution was used throughout the verification studies.
Minor modifications to the NESSUS/FPIcode al!cwed the processing of all

nodes in the verification model for a given response variable for the MVFO

method. The cost of the solution which allows to process the entire model

using MVFOmethod is equivalent to a single deterministic FEMsolution. Based
on the current experience for the size of models considered under the blade

verification study, it is unrealistic to expect to process the entire model

using the ADMVFOmethod for different probability levels. This is because of
the continuous shift of the design points to obtain new deterministic

solutions and the new gradients around the design point for each probability

level and node point. However, new techniques and strategies using iterative

solutions to obtain values corresponding to new design points might be worth

pursuing to reduce the computational cost. it is feasible now to process
selected critical nodes using _DMVFOmethod fcr manyprobability levels.
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7.5 Fiscal Year 1988 Effor_

Blade verification s_udies will continue during FY 88. The load

variables of pressure, temperature and speed will be _rea_ed as random. The

method of treatment of these load variables for the blade has been obtained

from the composite load spectra contract. The perturbation results from the

load variables will be added to the existing database to reana!yze the

response variable presented in this report.

Initial verification studies conducted on a simplistic model pointed out

the shortcoming and errors in deterministic frequency extraction as well as in

the method of frequency extraction for the perturbed structure. The new

NESSUS 2.5/FEM release which has enhancements and bugs removed for this phase

of analysis will be used for probabi!istic analysis of frequencies in turbine

blades. The additional random variable to be considered for this phase would

include mass density. A method for considering support stiffness variations

will be studied.

The verification efforts for the duct component will begin. The primary

analysis will be random vibration analysis with vibration levels, the

structure properties, and geometry considered as random. Initial verification

efforts will define the enhancements if any needed in NESSUS/FEM followed by

the full verification analysis.
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8.0 A STRESS-BASEDHYBRIDFINITE ELEMENTMETHODFORELASTO-PLASTIC
ANALYSISUSINGTHEENDOCHRONICTHEORY

8.1 Introduction

In this chapter, a three dimensional 16-node stress-based hybrii finite

element for shell structural analysis will be formulated, using the

endochronic elasto-plastic constitutive theory. The iterative scheme for the

solution of the nonlinear system of equations that results will be presented,

with the mid-point radial return algorithm being used to improve the accuracy

of the integrations.

The motivation for the stress-based element is predicated on She

observation that the assumed-stress hybrid model has been demonstrated to give

more accurate displacements and stress solutions than the conventional

displacement model [I]. In general, for shell analysis the degenerated shell

element is often used. Howeve r, in such an element the nature of stresses,

strains, and displacements is limited to a linear variation through the

thickness, which may not be the situation in complicated problems of

loading. On the other hand, conventional displacement-based three dimensional

solid element can present well, all of the physical fields in the in-plane

directions as well as in the through thickness direction, but can not tolerate

higher aspect ratios (i.e. the case when the thickness, compared with other

two dimensions, is too small). In a recent study [2], it is shown that the

stress-based hybrid element, in addition to providing better stresses, can

also sustain much more severe distortions than the displacement element.

Furthermore, due to the more accurate stress solution, the use of the hybrid

stress model for nonlinear problems, where the nonlinearity arises from the

coupling of material behavior to the stress field, should result in a faster

rate of convergence.

8.2 Stress-Based Hybrid Finite Element Formulation

8.2.1 Assumptions for the Hybrid Formulation

Here, it is assumed that _he loads and/or displacements are

applied incrementally, and one must satisfy the following equations within the

volmme of the element:
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Linear Momentum Balance;

Ao.. + af. = 0 in V
iJ ,j _ m

(8.1)

Angular Momentum Balance;

Aa.. : Ac.. in V
Ij jl m

(8.2)

Strain - Displacement Relation;

i

AEij : _ (Auij ÷ AUj,_) in V_ m
(8.3)

Constitutive Relation;

A_ij : Sijk_ A°k_
(8.4)

Traction Boundary Condition;

Ao..n. : AT. at S
13 j i o

(8.5)

Displacement Boundary condition;

Au. : A_. at S
i i U

(8.6)

Inter-element Boundary Conditions;

traction reciprocity

+

Ao..n. + Ao..n] : O at S
ij i lj j o

(8.7)

displacement

÷

u. : u- at S
! i p '

(8.8)

in the above, S is defined to be on the boundary cf the interface of b:_c
o

elements with the total boundary of an element defined as
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s : s u S U S (8.9)
D G U

Relaxing the requirement that the stress field within the elemens

satisfy the equilibrium equation a priori, the stress field will be selecteC

. . L__wise, _ssume
to satisfy the angular momentum balance, &olj = &aji, only. k:"_

that the change in strain can be related to the change in stress through:

aEij : SijkZ aak£

Note that in what follows Sijk_

and a plastic part with

(8.io)

was assmmed to be composed of an elastic part

e p (8 i_)+ &E..

: S e sP. _Ok_A_Lj ijkz g°k_ + _jk£
(8._2)

where

6
e ik6j£ k

Sijkz : 2_ + (3X+2_)2_ dij 6

N
p ijNk_

Sijk_ : (2u)(C-I)

kz
(8.i3)

(8._4)

8.2.2 Weak Form

Based on the a priori conditions and the enforcemenz of

equilibrium condition, compatibility condition, traction boundary condition

and traction reciprocity, the weak form of this stress-based hybrid

formulation can expressed as:

1 ]:- So.. dV
f {[Sijk_A_k$ - [ (au i j + auj i;: lj

m V ' '
m

+ Sf (A°ijnj -&Ti] 6u.dSt " S &o..n.6u..[J J [ dS
G

(8.15)

* _ (a°ij,j + i) : - .
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Which after applying Green's tn_ore., reduces to:

_: j" S.. Aa, _u.. dV + f _u. 6a. dV + j" 6u. .Aolj dV
m V L +iK_, '.<_, _-j V_ z, j lj V '- ' j "

m m m (8.1_)

r AT _u. dS + jr Af i _U. dV : 0÷ J i L i
S V

m

8.2.3 Discrete Weak Form

The stresses within an element were represented as a sum,mation of

.

polynomial stress modes, ALj m, with undetermined parameters A8 m,

&a.. : A.. &B
ij _jm m

(8.17)

Refer to Appendix B for the exact form of the polynomials used to formulate

the hybrid element. To enforce compatibility in a weak form, one may use a

test function of the same class as the function for stress. Define 6_ij as

the test function in terms of the same polynomial stress modes, ALj m, with the

arbitrary parameters

6_.. : A.. 6B
ij _m m

(8.18)

The displacements were interpolated from the nodal

values, &qk' and the standard isoparametric shape functions, mik' as:

AU. : ikAqk
(8.19)

The trial functions for the displacements and the stresses were expressed in

terms of the parameters &s and &c k. Define
m " •

_u i : $ik_qk
(8.20)

as the test function in terms of the shape functions used in the interpolation

of the displacements. The parameters, 6qk' will be arbitrary except cn the

porc/on of the boundary _here _he diso/_c .....nts a _ prescribed zn which case

they v_tll be zero.
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Substitution of the discrete form for the test and trial f_nc_ions

(Eq. 8.17-8.20) exoressed the combined weak form in terms of ASm and Aqk to

glve:

] ASmAijmSijk£Akzn_BndV + ] Aqk@iknjAijm68mdS+
S (8 21)m Vm , . .

f AS A n $ik6QkdS + ]
S m ijm j " -S

m

- ATi$ik6qkdS : 0

Defining the matrix

H : f Aij m Sijk_ Ak£ n dV (8.22)
= V

m

and the matrix

G : f $ik n A.. dS (8.23)
: S j lJm

One may express the combined weak form in matrix form as

Z AS T H 6S + AcT G 6B + 6cT G AS : ATT 6g + A[ T 6g (8.24a)

m

where

A! : f ATitik dS ; AF : _ Afi tik dV (8.2Cb)

The global stiffness matrix may be assembled with AS and A9

re5ained as unknowns. The number of unknowns at the _1obal level may be

reduced by eliminating the stress parameters which are assumed only within the
f

domain of the element, with no coupling between elements. For arbitrary 6_

one must satisfy

- H A6 + G AQ : 0 (8.25)

Thus, ,_S may ce exoressed in terms of the dfsplacemen_ of the eieme._ as
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For arbitrary 6c, then one mus_ have at the global level

z

m

GT AS : &T * &F 8.27a

Cr

"P -Ir.G" H G ac : AT + &F (8 27b)

m

8.2.4 Constitutive Mcdeiinz

__ s ....p_e constitutive relations suchWhile, until a r=_ years back, _- ]

• harc ....n o plasticity were _neas isotropic harden:ng or linear kinematic =_i _ . _'

mainstay of computer programs, currently there ks a widespread interest in tae

constitutive modeling of exoerimentally observed behavior of materials

involving plastic ant creep deformations under monotonic and cyclic leading.

The general theory of interna! variables has played a key role in

the development of more and more realistic constitutive models to charac:erlze

inelastic material behavior. Typical internal variables _ _ are widely

employed include: i) the so-ca!led 'back-stress' (the tensor loc=t_r___..= :he

center of the yield surface in stress space)_ ii) the parameters tha_

• _n_ vield surface, iii) the parameters thatcharacterize the exoansion of _'_

characterize the boundary-surface' in mu!ti-vie!d-surface theories

plasticity [3-7], and iv) the 'drag-stres' used to characterize the creep

surface.

Here, the concep_ of intrinsic time deoendent on plastic strain is

,used for the derivation of the differentia! or incremental form of the

integral relation c: stress and strai_., fo_. D_a_-ic_t'¢.___ , . . This deriva _ _

"_= _1' in a structure _- [5 similar to tha5 ofpresents the endochronic _.._o....... ,

classical o_=stic_ty,___ thus, __in_o to a stiffness_ _=/oe..finite finite _=_=_

fcrmu!ation.

While the endochron!c relation as Cevelcped by Watanabe & At).,_rl

Lo]. is simi _=_--._in i_s s=_uc_. ...._,_to _na= o r. c!ass_cal ,olas=ic_tv-. , there -re

c_ass!cal slzs_ic!=/ theory. Ti-.e _si_.=/ to mcce: :es= da_a f_r hc:!:
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monotonic or cyclic plasticity as accurately as possible, wi:h a minimal

number of material parameters makes the endochronLc theory a simple theory =o

implement in a finite element code.

Following, is a sur_arized _ab!e of the rate form of the

endochronic :heory. The detail of the derivation will be shown in Appendix B.

Table 8.1

Summary of the Internal-Time Theory of Plastici_y

Endochronic Theory:

dOkk = (2u÷3_] d_kk(!)

%_ere u, _ are lame constants

(linear); or

f(_] = a + (1-a)e -Y_

c : I +  i(oI+

S : 2uo o
Y

(e:<oonen t ia! )

0

(S-c):h _ S (df/d_)
~ V

+

S of 2(_) 2_
Y

o(z) e pog(Z) ÷ o1(z) (: E Sli
i

l

e - ]

• . _ _(:) _ __ai_(i)
: [ c (1) h : [ : _ 2_ -

- i i ' - i - i

Rate of K__._m=tic F=_=_n_-:

(i)
. O L- _ D ½

d_ (i) : 2_ Oli _ f _ _L C_ (de" : d-']

(no sum on i) for i = 1,2 .....

d_ : Z d9 (i) : 2u PIL ode - :

i

!

a,.m _i)
L~ f,_ .-P : d-']
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Table 8.1

-..me Theory of PlasticitySummary of the In_ernal 7_
(Continued)

Rate of Isotrooic Hardening:

(linear f)

0

dS : S 3 (de P : deP]. ½
y ~ .

(exponential f)

0
: r [ S=- S

Y Y

8.2.5 Residual Calculation and Iceracion Scheme

Assuming that the material at state n+1 involves plastic process,

then the resulting stress field wi!I_ not be in ecu_l_brium;.___ however, one may

compute the out-of-balance loads needed to oroduce an equilibrated stress

field at that state. For equilibrium at sCa_e n+1, one should have:

n+1 n+1
_.. + f. : 0 (8.26a)
lj,j l

n+ I n+ I
_.. n. : T. (8.28b)
ij j !

• ' " a_9 .... _1o2 ofWeighing the above with the test function 6u i will glve after _ _=-'

Green's theorem:

n+l

Eck_qk : V_ o..13 V_k,-j _c_...d'! (o.29)

m

The out-of-balance loads will be"

_: . n+i d'! (!)Q =) f T. n+l dS . f -
: l 9ik l :_ik _,.

r.

-or the points where the =!ast_cailv app =ec stress _.-..... = ..... ,=:=_ s ......

:Y.e srccess should be c[_.s:ic. -i_--.sct-'fness matrix <a'," be ,_'2,d_-e: :.: re?!ec:

"' ...... _ to fo!ic.; -_: _:astic:he slas<ic _rocess e_.- a .o_, :he o:::-cf-balance _.=_
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s:ress-strain path. This will _ive a correction to the displacements as well

as the stress. However. when the strain is comouted from zhe stress through

the constitutive relations, there will be error in compatibility.

To enforce this condition, a weightin_ function of _he same class

as the function for the stress field may be used. 7he following residual Load

due to the error in compatibility is obtained:

n+1 i ]n÷1 } _ o.. ev (8.31)
R _8 : f {_ij - [ (ui, i _ ui i lj
-E -- V _ " '

m

Application of the above residual to the system will £ive _-_ emen "_'_

are compatible with the strains obtained from the smress field. There will be

some redistribution of the stress when the strain residual is applied, bu_ for

the most pare, the displacements will change more during each /iota;ion than

the stress One may apoly both R and R ac the smme time, and continue the
• • --G --E

iteration process until the norm of the displacement does not change

significantly.

8.2.6 Consistency Condition

With the above hybrid method, unless the stress/strain i....... _s

are very small, there will be errors in the consistency condition.

Fn÷1 r n+1 n+1 [cn+i n+1 2L_ _ _ ] : _ - _ ] - R : o (8.32)

A mid-point rule is used for _he in_ezration of the s:r_ins _o

_n._e change of &_ the plastic s_rainreduce the errors. Considering the f' {_ ~,

may be computed as:

, N : A_ (8.33)
A_P : N

~ - 2u(C-I)

where

((on _ (n ._ + s._ _ + _J) (8.3L_)
N :

-
" _'-_,_ - the _ _ in sc_--_n for _ 3la_=Lc orocess may be aDoro:<imated as:
L-_._W-S_ .... • • . " "

N N : ac
A_ . k - "

_E - 2_ " (3_-2=)2_ (_" : [ - "_ C-_
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Using the mid-point rule will ieaz to compatibility errors. However, zLe

aoolication of the residual R will co .... t the errors thac accumulate Cue zo

comgatibili_y.

']_ and DThe final system of ecuaticns that resu_, when both R _ are
• __. --_

applied during the iCeracion orocess wil! have the form

-H G &_ R-

:" o, [ }= [ } (°.36)[ G: i _i
: : _0 ., ÷ &T + &F

-- --O -- --

Here, the matrix G is constant and only need be evaluated once. T,he macrix H

depends on the material behavior, and must be evaluated for each iterasion.

As each iteration, i, is carried out, the stress and disp!acemenc

are updated as:

n+1 n . (8.31=)_--

i

n+i n
a : a + AQ + I Aa I (8.37b)

i

The strain must be comouted in t:vo pares with the elastic part given by

A_AB : So= &_AB
(8.38)

and the olastic cart by

_ S O
AaBC_ : S-= '_:--+ = z! aG-. (8.39)

8.2.7 Imclementation of the 16-Node Stress-Based Hybrid Element in

NESSUS

The szresses _n.n an e .........were re#r_se ..... as a su_azion of

equilibrated pc_'_--_=]_j.._......._tress modes Aiim., with underarm ;--_..=-_=_-rame_ers &_m"
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Aa.. = A.. A_
Lj Ljm m

(8._0)

SUooFolLowing the guidance and _es=ions from Punch and Atluri [2], 42 stress

modes were selected. The details of the derivation and the exact form of the

polynomials used are presented in Appendix B. To enforce comcatibility, _he

test functions _c.. chosen are of the same class as in the trial functions fcr
_j

stress.

The displacements are interpolated from the nodal values, and the

standard isooarametric shape functions are used. The exact form of shape

functions is shown in Appendix B.

Once the trial and mest functions for stresses and disolacemen_s

are determined, the needed matrices H, G, _, and &F can be evaluated. A flow

chart is presented in Appendix B to show the comolete procedure.

8.2.8 Validation Problems

I , Linear Case

Introduction

A standard test croblem for finite elements applied to the field of shell

analysis is the pinched cylinder problem. It was carried out by Cantin and

Clough [9] with a special displacement based cylindrically curved element.

Henshe!l et ai. [10] used an assumed stress hybrid element with both

ccnforming and non-conforming versions. Eater Ashwell and Sabir [11] analyzed

_ a cylindrical shell element _;hich is based onthis problem by us_n_

independent s_r_in functions. Vat/ors mesh sizes were used by these works and

convergence results were reoorted elsewhere.

Results

The dimensions of this pinched cylinder are shown in Fig:are 8.1. Due tc

the symmetric behavior of the geometry and loading, oniv one eighth cf the

domain is mcdeled. Two thickness values (0.094 in. and 0.01548 in.) are used
#

to simulate thick and thin shell structure respectively.

For the thick cylinder (t=O.09_ /n). an inextensionai theory was used by

Timoshenko and Woinowsky-Krieger [12] and the deflection of O.108a in. was

,- .. Cantin and Clou-_h [13] obtained thereported which is '.<..o,,nto be =co io_..;.

value of 0.I128 in. b;,'dividin=-_ [he ca[an= of the cylinder into zhree eie.-.en=s

Longitudinally and "'_ c:rcum-e'.'-- " -_-- _i_h ;20 _ de-_'_=s of "_==_-_
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Figure 8.1 . ched Cylinder Problem

L = 10.35 in., r = 4.953 in.

E = 10.5x10E6 !bf/in. 2, _ = 0.3125

P : 100 ibf

Thickness = 0.094 in. (thick), 0.01548 in. (thin).
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Henshell e_ al. [10] used the assumed stress nybric element with mesh sizes

from I:<I up to 6:<6 and reacnec a converged displacement as 0.!i8 in. For the

present 16-node s_ress-basec hybrid e_e .....,_, _wo meshes (1:<k and !:<_) were

...... __,,e_ from both meshes as shev;nused and the displacement o!" C, 118 _ v;as co "-i_ _

in Table 8.2.

For the thin cylinder (t=0.01548 in.), the approximated analytical

solution 0.2439 in. was compared with the oresent hybrid element, with three

different mesh sizes (Ix4, I:<8, and 2:<8), as shown in Table 8.2. Also listed

in Table 8.3 is the displacement solucion obtained by Ashweli and Sabir [I]

with the cylindrical shell element based on strain functions.

It is clear that the solution based on the present 16-node szress-cased

_ _ tn_c_ and thin shell problems, and ag._.shybrid element converges fo. both " _ '....

well with other numerical solutions.

2. Non-linear Case

Introduction

One of the popular problems in the field of e!asto-plas_ic sv.u_tural

analysis is that of a perforated plate under tension loading. Extensive works

have been carried ou_ in prior literature by using experimental testing and

finite element techniques. Theocaris and Marketos [13] handled this problem

experimentally by using photo-elastic coa_ing techniques. Total s_rains and

plastic strains were reported as well as stresses which are estimated by

Prandtl-Reuss incremental plasticity relations. Finite element methods were

used by many researchers, among them Marcal and King JILl; Yamada, Yoshimura,

and Sakurai [15]; Zienkiewicz, Vallippan, and King [i6]; and Bartelds [17].

Though the problem was analyzed by _se_.c,.e.s for both cases of olast_city

with and without strain hardening, only the case with s:rain hardening is

studied here.

Results

--i_ _n:e- ho!e unzerThe perforated plate problem considers a plate ___h a c_ . .

uniform tension as shown in Figure 8.2. Due to the sym_menric characteristics

of the geomezry and loading, only one eighth of the p!a_e is modeled.

Increments of load equal to 0.! ot the load ac first y{=_s were us__

The plastic zones at these loading steps' are presented in Figure 8.3, _.;hich

Zie..r.ae._c- el _.;_ouseare in _ood_ ae........_'=--n__ with resui_s oo_ained by. _ .... : _ --=:..

constant szrain triangle with an 'initial stress' flni_e element as_coacn.

149



_._ i_ 8.2

Deflection under C,ne Lc_ :-_" .hick Pinched Cylinder Problem

(t=0.094 in.)

Present Hensheil e_ al Cantin & Clough

mesh disc. (in.) mesh disp. (in.) mesh disp. (in.)

I X 4 0.I18C0

IX 8 0.11813

I X I 0.1i66 IX 3 0.0297

2 X 2 0.1111 2 X 5 0.0780

3 X 3 0.1049 i X 7 0.0987

X _ 0.1170 2 X 7 0.1002

5 X 5 0.1173 3 X Z9 0.1128

6 X 6 0.1174

Table 8.3

Deflection Under One Loac for Thin Pinched Cylinder Problem

(t=0.01546 in.)

Analy_.ical Present Ashwe!l & Sabir

disp. (in.) mesh disp. (in.) mesh disc. (in.)

0.02439 1 X _a 0.023516 I X 4 0.02403

i x 8 0.0_L$891 I x 8 0.02406

2 x 8 0.024315 2 x 4 0.02409

2 X 8 0.02414

3 x 4 0.02414
f

3 x 8 0.02418

8 x 8 0.02_31
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The calculated total ssrains are comcared with the exDerimentai resul_s

from Theokaris and Mar_e_os [13] and o_her finite element soiu_ions [IC,16] as

shown in _5_re_'_.... 8. h _'_ can be s_n_. =has the solutions from presens meshed

agree well with others.

8.2.9 Consideration of Lo_J to Zero Strain Hardenin_ Prob!em

The presen; stress-based hybrid formulation provides a more

accurate representation of _he stress and the s=rain _han che displacement

based method, yet the formulation breaks down for certain classes of material

behavior. For elastic perfectly plascic maceria!, or for a non-linear

hardening material where the tangent modulus becomes very small, the ssress

based method, in the present variational formulation, is incapable of

correctly modeling the solid. Likewise, for elastically incompressib!e

materials, the stress based method, in the present form, breaks down.

The magnitude of plastic strain in the endochronic theory was

expressed in terms of _he strain increment as

d[ : [ N : d["

To express the magnitude of plastic strain in terms of the stress incremenc,

one may, through, a simple substitution, note

dS (8._21

dS
_ _ ~ d= (8 431 _T • -- + --

- C '" 2u C

or

d< : (C-i)2,_

which gives the plastic strain as

. o 1 dS) N (& u5c_" : (_,i :
- (C-I)2= - - -

. , - _ _ _,,_ S_, =:S._ _. ?e...e..CIf C:].O, then for the oLas:i _ ssr_in _o remain "in{t = _'_= _.... _nc _ _

mus_ be s.r_r.ozcnal _o _'ne no:'..-._, ct" =!-.e ,'ieLd s,-rf_ce,
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0.0

Experimental

° Initial Stress

X Da_al.... Stiffness

& Presen_ Methcd

l , i I I , , ,

0.5 _ .0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

__"t

s

Figure 8.4 Development of Maximum Strain Point of First Yield
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N : dS : 0
(8.46)

In the limit as C tends to 1.0, the hybrid fini:e element Formulation will no:

be feasible due to the inability of a computer no numerically evaluate the

l_mL_ of

NLidSLj (8.47)

Lim (C-I)
C_o

For values of C that are close to 1.0, as is the case when a material is in

the range of strain hardening where the rate of hardening is such that the

stress strain curve is nearly horizonnal, numerical difficulties will occur.

in order to avoid numerical difficulties when C is approximately

1.0, the variational statement should be reformulated by introducing a new

field variable for the magnituce of olastic strain, d_. The magnitude of

plastic strain is related to the deviatoric s_ress increment through

1 _ : dS (8._8
d_ - (C-1)2_ - -

The total strain is _.ven_ by

ds : d_ e + doPe d_e _ d_N (8.49)

where the increment of plastic strain is expressed in terms of a normal to the

yield surface with magnitude d<. Expressed this way, the compatibility

cons _ i _U _ _veequation becomes, assuming that the _'_ _: equation is satisfied a

priori,

QG

d[/.
,_,j 2_

x (8.50a)- --+ (dc'I)I + d_ M
3_ * 2u)2u

or

_ _e dCkz ,, (S 50b)du. * d_ _,,.,
l,j - _ijk_ :3

'.._i-h
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d_(C-l) 2u : (N : dS)

: (M : d:)

When C:!.0, the stress increment musm be orthogonai to ;he yield surface, and

;he magnitude of plastic strain is no longer coupled to the trace of the

stress increment with the normal to the yield surface. Instead, the magnitude

of plastic strain is determined frem the compatibiI/tv condition. The

magnitude of olastic strain will become an undetermined paramemer to be

resolved at the global level.

8.2.10 Weak Form

For the incremental formulation, the finite change in magnitude of

plastic strain, _ must be considered. The weak form for the magnitude of

plastic strain is expressed by using a weighting function &h of the same class

as &_. The weak form becomes:

T .F T (c-I)2 - ,,J : A_o} dV : 0 (8.52)
m V

m

The compatibility condition may still be expressed in weak form through She

use of the weighting function 6_... The weak form of the comoatibili_y
lJ

condition becomes:

mz V_ "iISTjk_ &_-LK + T &_ NLj - &U.lj _'_ _c..lj dV : 0 (8.53)
m

Apply - Green's theorem the combined weak form may be expressed by ccmbin _in5 7 . .

_,e__ form for comcatibility and olastic strain with the .... form fo

ecuilibrium (8.16), and traction boundary condition (8.5,8.7) as:

S jkr [ - = L&_kL_CijdV + _ AU. . 6c.. dV
m V V '_,j lj

m m o

+f
V

m

_,f, 6u_ dV + _ A_((C-I)2u - Nij&oij) d; d:7 : 0
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8.2.11 Discrete Weak Form

- . .. was
.n the s_ress-based method, the stress increment. 5_ 3

anc unde _.m_'ned
_efined through a se_ of polynomial basis function, Aijn,

stress sarame_ers 6£ n. Likewise, the change in magnitude to plastic

szrain _, was defined through a set of polynomial bases functions,A k, and

undetermined _arame_ers _c k. The test function, 6_, may be defined through

the same oasis functions.

55 : _akA k
(8.55)

5_ : 6akAk. .

Daac:me.,5, asUsing the same basis functions for the stress and dis.' -

was used in the hybrid method, a three field variational statemen¢ was

formulated. After subsSitution of

_.U :
5_ : AakA k, 5_[j : AijnA_n , n 0n_aq_

(8.56)

- .. : Aijn_Bn , 6u :c_ : 6CkA k, 5c1_ n _n_Sq_

and defining the matrices

_{_ : _ A s dV (8.57a)
V ijm ijkZ AkZn
m

H__a_ : f T Ak._ILjALj n dV (8.57b)
V

m

H : _ Ak2U(C-1) T ,\_ dV (8.57c)

m

G : f $iz j _ijn dV (8.57d)
: V

m

where
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The combined weak form may be expressed as:

- 6sTH_s__ : - + 68TGAG_ - 6aTHaB_=-: - _TH-:aaAC- + (8.59)

T
_, H S&S_ + A__TG6G : ATT_e + AFT6G

The following system of algebraic equations results for arbitrary 6£, 6_6

and 6G.

-'Li"_ S

-H
--:aB

GT

t

-H G
:a£

H O
:_C_

O O

_s
L_C:

&Q

o
O

1
(8.60)

As in the stress-based hybrid method, the parameters &£ and AS may be

eliminated a_ the element level. This reduction is possible because the

parameters for stress and magnitude of plastic strain were defined in such a

_n=_ no coupling occurred between elements. _nenway _'-_ '" is non-singular cne• :_

may express A£ in terms of A_ as

-i (8.6_)
ac : H :H_ &£-- :_

Subst" _ionl_u_ th=n.,allows AS to be expressed, in terms 09 the displacement as

_ = H -l

• or

-H &B + G &c : 0 (8.63)
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For non-singular H _he usuai hybr!4 s_iffness matrix results ant mat be

_loe_razc equationsassembled and solved as a system of _ _ _ "

•*-I (S.6_)
z G- H O aE : aT_ + _F

m

When the material is in the fully plaszlc range, the orchogonaiicy

_ _ prevents the inversion of u due to i_s singular form.cons_ra-n_ Wac

in the event chat H is singular, _ is retained as a global

variable and solved for as an unknown parameters ac the global level. While

for a single element H may be singular, the giobal system of equations wili

be non-singular if proper boundary conditions are applied. The number of

stress parameters a_ the global level may s_i!l be reduced provided H58 is

non-singular.

Since the incompressibility constraint arose as a limit condition,

all elements would not be expected to behave in an incompressible manner. A

substantial savings can be made if the decision to reduce or retain the

parameters for the magnitude of plastic strain is made for each eiement. The

criteria used to determine if an element should be reduced may be based upon

the value of C at each Gauss point in the e!ement.

By setting uo the element variational statement for an element, as

in equation (8.60), the matrix may be partitioned into reducible degrees of

freedom and non-reducib!e degrees of freedom. Emp!cying a standard

substructure aigorithm [18,19] allows one to reduce the unnecessary parameters

pa. am_e.s ant recuced s_f,,ess terms to globalwhile mappin_ the required _ _ _ " -'_ "

Likewise, once the global parameters have been determined, the back

substitution to find the reduced degrees of freedom may be imolemenced through

a standard substructure algorithm.

8.2.!2 Considerations for Finite Deformation

Rigorous and consisten_ formuiations for numerical ^-=_"-_

_ large strain problems have become necessary due to thee!astic-p_-stic

increased importance in recent years of analyzing problems such as metal

forming processes, ductile fracture initiation and scab!e c. ac_ grow... :n

cracked bodies, etc. indeed several such formulations, and applicaslcns of

the same, have appeared in recent literature. Amcn_ these can be c{-e _ :he

"_'' Marc_! ant R_ce [20], whc use a cocai Lazrangean (EL)
worLs OZ: n=DOlt, - _ -
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formulation; )[eedleman and Tvergaard [21,22] and Hutchinson [23], who also use

a TL formulation using convected coordinates; Yamada ecal. [2_] _ho use an

uoda%ed Lagrangean (UL) formulation'; Oasias [25], who uses an UL scheme which.

due to the use of an e!astic-olas%ic race cons_iCuslve law tha _ dces not ^_ {-

to a potential, leads to non-symmetric stiffnesses through a Galerkin scheme"

McMeeking and Rice [26], who also use an UL scheme, which through the use of a

rate constitutive law with a potential leads to sym._ecric stiffnesses: and

Nemat-_asser and Taya [27], whose formulation represents a modification of

that in Ref. [26] to improv_ the accuracy in the case of large deformanion of

compressible materials. A!! of these rate formulations [20-27] are based on

the principle of virtual _ork, or its variant, a variational principle due to

Hill [28]. Thus, ail the above works are based on assumed d.s_l_c_me.,_ type

finite element methods.

A stress-based hybrid formulation for the analysis of finite

deformation problems was presented by Atluri [29] at early 1970's. Later a

series of research works on using hybrid formu!a_ion based on comolementary

energy princiole or its race form were done by Atluri and i_is colleagues [30-

63]. The problem of determining suitable stress modes for hybrid or mixed

formulations in the finite strain analysis has also been investigated by

Atluri etc., and guidances and recommendations to choose those stress modes

which will result in stable, invariant and least order elements were reported

[6_-67]. The endochronic theory which has its superior constitutive modeling

• - cyclic hardening and initial strain problems.capability, in crcss-hardenln_, --

-9 i _ - rover mhe classical theory has been successfully i.....emended into hyb ic finite

elemen; method for finite deformamion analysis by Atiuri et al. [68-77].

For f!n__e deformation analysis, a rate form stress-based hybrid

formulation can be found {n [37] This formulation based on the Hell {....

Reissner principle wi "_,,to=al ka_=ng_=n_._.__. aporoach,, can be im_iemen_ =_- into an,"

existing finite element program.

The weak form of this stress-based hybrid _]ormu!a_ion can be

represented as"
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r_ r ]- S._ &u.

'4

i r .+6U .*gU, &U L ]
_uj,__ + _ s_j. t_ui_,_ j,_ K,._ .,j

1
_ : c:jk__s:j :sk_ldV}

(8,66

mV

÷F
V

where

N+I
o b .au. dV + f
o J ] S

o

N÷ I
t.&u. dS -
J ] V

[S., F., 5u. ) dV
_K jK j,i

N I N _-N'uk[Yij - _ ( _i,j ,i
N
Ukj]] ASij dV}

Sij : second Kitchhoff stress

&Sij : incremental second Kirchhoff stress

N n_=,-ka_-an== strain tensor at state N (S.66)

lj

Fij : deformation gradien_ tensor

bj : body force per unit mass

The incremental second K_.c,mo[f stresses within an element were

reoresented as a surmacion of polynomial stress modes, A... with undetermined• _]m

parameters &_ "

_S.. : A.,
!j __jm m

8.67)

The d'sp!acemen_s vere interpolated from the nodal values, 4qk, _nc zne

ssandard £soparame=ric shape functions, _ik as:

: Oil AC,.AUi _K ".-,

8.68)

The same form of co'_vncmla-_ stress modes and interpolation func s_o_s-....;ill be

" _ =_d du resoectiveivuseC :'or one :es= funczions _S _ _.. _ , .
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Substicute zhese discrete forms in:o :he weak form (8.65) and rearrange

terms, the foilowLng macr[:< form can be obrained,

T' " T .'r

- _" H _8 + AG _ K _Aa + _'G Ac * 5" G SAc

: _,_cT R * 6_T _ ÷ _ Ac T AQ
"--_ -- "--'C -- --

(8.69)

where

H : f Cijk_Ai]mAk_n dV
: V

Sik_j ,' dV

G : f Aijr(_Vik,j + _ik,i ÷ _kn i_kn,j ) dV (3.70

-e V ik'jk jk,i

dV

N 1 N N N N

R : .I " i[Y: - - ( u. .+ u. + u.. uk,
¢-

)]A.. dV

-c V j 2 _, ] ], i _<z j ijm

N+I N_ 1

_Q-: vfoo bj *jk dV + SF ':j*jk dS
O

For arbitrary _, one mus_ satisfy

- E H +G _c : R
- -- - --C

(_.7_

Thus, B may be expressed in terms of disoiacement for the elemen% _s

-I
(8.72
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For arbitrary 6£_, then one must have ac global level

+ _0) (8.73)
r (K _c - C'{) : _ (R_ _

m m

or

[ (K + GT H -I G) &c : r (G T H -I R ÷ ?, + &Q) (8.74)
: : : -- - : : --C -e --

m m

Then the final solutions can be obtained by the similar iterative Scheme used

for the elaszo-plastic analysis presented in previous sections.

8.2.13 Considerations for Thermal Loadin _-

In general, for structural analysis with large temperature change,

the thermal effect is important and can not be ignored. The stress-based

hybrid formulation oresented in previous secsions includes mechanical loading

only. However, this formulation can easily be extended to account for thermal

loading as we!!. The necessary modifications for the consideration of thermal

loading are oresent as follows.

With the conslde, a_ion of thermal loading, the total stra__n

components can be separated into three parts,

e t p (8.75)
• . . 4- _- . . 4- _ . .

e o ^-_ o]=s <rain .... _ _ due to mechanicalwhere e.. and E. are e!aszic tic s

Ioa_{n= respectively and _ij are thermal ssrains which can be shown as

_._. : 6.._(T- T )
iS ij o

(8.76)

where 6. is Kronecker dei "'- < is the l"n_a_ coefficient of thermal exmans'.cn

_J ._.e ....C_
of the material: T is the prescribed temcerature and T O is the -_P ....

temperature.
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Then the ne'._modified ,_eak form is

mV

] t

{(s ,' )
ijkZ_CkZ 2' ,_,j j, i

t

+ [ [ao .n - aT ]_u dS + j" aaijn.£u, dS (8.77)
Lj j i i s j z

m

÷  rL] HL dV : 0

After subscLsutions of the discreted form of the trial and tes_ functicns as

those used in section 8.2, one may express the new matrix form as:

.T

__- _S T H 6S ÷ am T G _a + 6c T G aS : A[t __ + aT T a_ ÷ aF_T _c

m

(8.78)

where

aF t t: _ &_.. A.. dV
- lJ zjm

V

For arbitrary 6S, we can ge_ the form

(8.79)

- H A_ + G aC : AF _ (8.80)

Thus, AS may be e:<oressed in terms of &[ as

as : (Gaa - aF _) (8.8_

For arbitrary _c, the final global form can be obtained as

T
G'&_ : 'AT + &F (8.82

or

GTH - ? -_LF t - aFi O &c : G'H ÷ iT
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TITLE:

PROBLEM:

TYPE:

RESPONSES:

FEM MODEL:

VALIDATION CASE i

Static Analysis of Cantilever Beam

A cantilever beam is subjected to correlated point loads.

Determine the probabilistic distributions of the tip
displacement.

Static, correlated loading

Tip displacement

NESSUS element type 98 - Two-node Timoshenko beam element
Number of elements = 20

Number of nodes = 21 (6 degrees-of-freedom per node)

Boundary conditions: Two base springs

Figure VI-I

ANALYTICAL MODEL:

Analytical Solution:

Tip displacement = Sum {2 : Pi : Li_X2 _ (3:L - Li) + Pi : Li X L / K}
(i = i to 5)

where Pi = ith load

E = Young's modulus

L = Total Length

Li = Distance from the fixed end to Pi

K = Base spring constant

Reference: PSAM ist Annual Report, Vol. III_ 1985
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VALIDATION CASE I (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES

Number of Random Variables = 10

Variables Distribution Median Coef. of Vari_

Correlated Loads,

PI to P5_

Young's Modulus

Length

Thickness

Width

Base Spring

Normal 20 ib (mean) 10%

Lognormal 10E+06 psi 3%

Lognormal 20 in 5%

Lognormal 0.98 in 5%

Lognormal 1.0 in 5%

Lognormal IE+05 ib-in/rad 5%

XNote: Correlation coefficients = exp{-Distance between loads/20}

NESSUS CONVERGENCE/PERTURBATION SETTINGS

I. Convergence Limit:

Max. number of iterations allowed:

Max. allowable tel. error in the residuals:

Max. allowable abs. error in the residuals:

Max. allowable tel. error in the r.m.s, of displacement:

25

0.001

Inactive

Inactive

Max. allowable tel. error in the r.m.s of strain energy: Inactive

2. Perturbation Range:

+0.001 standard deviation for length.

+0.1 standard deviations for the remaining independent random vat:

SOLUTION COMPARISON:

i. Deterministic solution using mean values of random variables:

(node 2£, component 3)

Tip Displacement

Theory ().4032 in

NESSUS (]).3969 in

Difference 1.5%
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VALIDATION CASE i (Continued)

2. Probabilistic solutions at selected probabilistic levels:
Theory: Monte Carlo solution (sample size = 100,000)
NESSUS: Mean-Value-First-Order (MVFO) solution

Advanced MVFO solution
First iteration solution

|

(See Figure 2)

REMARKS:

i. The perturbation range for the length must be small enough, otherwise the

perturbation solutions may diverge.

2. For the probabilistic solution, a calibrated "exact" solution is derived

by dividing the theoretical displacement by a factor of 1.0157. This

factor is the ratio of the theoretical solution to the NESSUS solution,

both computed at the mean values.

3. The output of the NESSUS code does not include stresses (moments are

the standard output). The validation of the root stress is included-

in validation case 2 which employs plate element.

Figure VI-2

A-- "EXACT"
x 1ST ITERATION

T1P DISPLACEMEh£r (CASE I)

t

MVFO: Mean Value F_rst Order

Calibrated Displacement = Exact//1.0157

t " I I I I

0.6 0.7 0.8

Displacement (in.)

MVFO /,. ADV. MVFO

CALI8RATED EXACT
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TITLE:

PROBLEM:

TYPE:

RESPONSES:

FEM MODEL:

VALIDATION CASE 2

Static Analysis of Cantilever Plate

A cantilever plate is subjected to correlated point loads.

Determine the probabilistic distributions of the tip

displacement and the root stress.

Static_ correlated loading

a

Tip displacement and root stress

NESSUS element type 75 - Four-node shell element

Number of elements = 20

Number of nodes = 42 (6 degrees-of-freedom per node)

Boundary conditions: Two base springs

Figure V2-1

2

ANALYTICAL MODEL:

Analytical Solution:

Tip displacement = Sum {2 _ F'i i Li_2 _ (3:L - Li) + Pi _ Li I L /

(i = I to 5)

where Pi = ith Ioad.(ioads are partially correlated)

E = Young's modulus

L = Total Length

Li = Distance from the fixed end to Pi

K = Base spring constant

Reference: PSAM Ist Annual Report_ Vol. III_ L985
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VALIDATION CASE 2 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES

Number of Random Variables = I0

Variables Distribution Median Coef. of Variation

Correlated Loads.

F'I to F'5X

Young's Modulus

Length

Thickness

Width

Base Spring

Normal 0.1 Ib (mean} 10%

Lognormal fOE+06 psi 3%

Lognormal 20 in 5%

Lognormal 0.1 in 5%

Lognormal 1.0 in 5%

Lognormal IE÷05 Ib-in/rad 5%

_Note: Correlation coefficients = exp,-Distance between loads/20]-

NESSUS CONVERGENCE/PERTURBATION SETTINGS

i. Convergence Limit:
Max. number of iterations allowed:

Max. allowable tel. error in the residuals:

Max. allowable abs. error in the residuals:

Max. allowable tel. error in the r.m.s, of displacement:

8

O. 00 l

Inactive.

Inactive

Max. allowable tel. error in the r.m.s of strain energy: Inactive

2. Perturbation Range:

+0.01 standard deviations for the length and the width.

+0.! standard deviations for the remaining independent random variables.

SOLUTION COMPARISON:

i. Deterministic solution using mean values of random variables:

(node 2l, component 3)

Tip Displacement Root Stress

Theory 0.7648 in 3600 psi

NESSUS 0.7692 in 3657 psi

Difference 0.5% 1.6%
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VALIDATION CASE 2 (Continued)

2. Probabilistic solutions at selected probabilistic levels:
Theory: Monte Carlo solution (sample size = 100,000)
NESSUS: Mean-Value-First-Order (MVFO) solution

Advanced MVFO solution
First iteration solution

(See Figures 2 and 3 for comparison)

REMARKS:

i. The perturbation range for the length and the width must be small
enough_ otherwise the perturbation solutions may diverge.

2. For the probabilistic solution of stress (see Figure 3), a 'calibra

exact' solution was derived by dividing the theoretical stresses by a

of 0.982. This factor is the ratio of the theoretical solution to the

NESSUS solution, both computed at the mean values.
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VALIDATION CASE 2 (Continued)

Figure V_-_
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Figure V2-3
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TITLE:

PROBLEM:

TYPE:

RESPONSES:

FEM MODEL:

VALIDATION CASE 3

Eigenvalue Analysis of Cantilever Beam

Determine the probabilistic distribution of the

natural frequency

Natural Frequency

First three modal frequencies in two directions
d

NESSUS element type 98 - Two-node Timoshenko beam element

Number of elements = 20

Number of nodes = 21 (6 degrees-of-freedom per node)

Boundary conditions: Cantilever

Figure V3-1. FEM model

X

ANALYTICAL SOLUTION:

Frequencies (for both Z and X directions)

= Ci X SORT {E_I/(r_w_t_L_i4]"

where E = modulus

I = moment of inertia = w_t_X3/12

r = mass density (per unit volume)

w = width

t = thickness

L = length

i = mode number

CI = 3.52, C2 = 22.4, C3 = 61.7

Reference: Harris & Crede (Editors), Shock and Vibration Handbook, 31

PSAM ist Annual Reportj Vol. III_ 1985

182



VALIDATION CASE 3 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES
Number of Random Variables = 5

Variables Distribution Median Coef. of Variation

Young's Modulus Lognormal 10E+06 psi 3%
Length Lognormal 20 in 5%
Thickness* Lognormal 0.98 in 5%
Width* Lognormal 1.0 in 5%
Density Lognormal 2.5E-4 ib-sec2/in 4 5%

*Note: See Figure V3-1-

NESSUSCONVERGENCE/PERTURBATIONSETTINGS
1. Convergence Limit:

Max. number of iterations allowed:

Max. allowable tel. error:

2. Perturbation Range:

+0.001 standard deviation for length.

+0.1

20

0.01

standard deviations for the remaining random variables.

SOLUTION COMPARISON:

i. Deterministic solution using mean values of random variables:

Mode Theory NESSUS % Difference Comments

1 497.9 496.7 0.2

_ 5C)8..1 5_'16..8 _')..2

3 3168.5 3099.8 2.2

4 3233.2 3161.5 2.2

5 8727.5 8640.9 1.0

6 8905.6 8807.6 1.1

ist mode in Z Dir.

/st mode in X Dir.

2nd mode in Z Dir.

2nd mQde in X Dir.

3rd mode in Z Dir.

3rd mode in X Dir.



VALIDATION CASE 3 (Continued)

2. Perturbation Solutions (about mean values)

Vib. Perturbed E L t t r Freq.;F Gradient (dF/dI) Percent

Mode VariableX " Theory MESSUS Theory NESSUS Diff.

I Mean I.O00E+07 20.000 0.9800 1.000 2,500E-04 497.9 496.7

i E 1.003E+07, 498.7 497.4 2.5E-05 2.5E-05 0.3

I L 20.001 497.9 496,6 -5.0E+OI -4.8E+01 2.9

I t 0.9849 500,4 499.1 5.1E+02 5.1E+02 0.3

I i 1.005 497.9 496,7 O.OE+O0 O.OE+O0 0.0
1 r

2.513E-04 496.7 495.4 -9.?E+05 -?.?E+05 0.0
..............................................................................................................

2 Mean I.O00E+07 20.000 0.9800 1.000 2.500E-04 508.1 506.8

2 E 1.003E+07 508.8 507.5 2.5E-05 2.5E-05 0.2

2 L 20.001 508.0 506.7 -5.1E+01 -5.0E+OI 0.9

2 t 0.9849 508.1 506.8 O.OE+O0 O.OE+CK} 0.0

2 w 1.005 510.6 509.3 5.1E+02 5.1E+02 0.4

2 r 2.513E-04 506.8 505.5 -I.OE+06 -I.OE+06 -0.0

3 Mean 1.000E+07 20.000 0.9800 1.0002.5_E-04 3168.5 309%8

3 E I._3E+07 3173.2 3104.4 I._-04 1.5E-04 2.2

3 L 20.001 3168.2 3099.5 -3.2E+02 -Z_OE+02 3.8

3 t 0.9849 3184.3 3115.0 3.2E+0,3 3.1E+03 4.2

3 w 1.005 3168.5 3099.8 O.OE+O0 O.OE+O0 0.0

3 r 2.513E-_,4 3160.6 30Y2.0 -6.3E+06 -6.2E+06 1.9

4 Mean 1.000E+07 20.000 0.9800 1.000 2.501)E-04 3233.2 3161.5

4 E 1.003E+07 3238.0 3166.3 1.6E-04 I._E-04 2.3

4 L 20.001 3232.8 3161.2 -3,2E+02 -3.1E+02 3.6

4 t 0.9849 3233.2 3161.5 O.OE+_ O.OE+O0 0.0

4 w 1.005 3249.3 3177.0 3.2E+03 3.1E+03 4.3

4 r 2.513E-04 3225.1 3153.6 -6.4E+06 -6.3E+06 2.0

5 _an 1.000E+07 20.000 0.980¢ 1.0002.500E-04 8727.5 8640.9

5 E 1.003E+07 8740.6 8653.9 4.4E-04 4.3E-04 1.0

5 L 20.001 8726.6 8640.1 -8.7E+02 -8.4E+02 3.9

5 t 0.9849 8771.2 8681.9 8.9E+03 8.4E+¢3 6.0

5 I I.(>05 8727.5 8640.9 O.OE+@) 0._+00 0.0

5 r 2,513E-04 8705_8 8619.3 -1.7E+07 -1.7E+07 0.7

6 Mean 1.000E+07 20.000 0.9800 1.0002.500E-04 8905.6 8807.6

6 E 1.003E+07 8919.0 8820.8 4.4E-04 4.4E-04 I.I

6 L 20.001 8904.7 8806.7 -8.9E+02 -8.5E+02 4.4

6 t 0.9849 8905.6 8807.6 O.OE+O0 O.OE+O0 0.0

6 w 1.005 8950.2 8849.3 8.9E+03 8.3E+03 6.3

6 r 2.513E-04 8883.4 8785.6 -1.8E+07 -1.8E+07 0.9

..............................................................................................................
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VALIDATION CASE 3 (Continued)

3. Probabilistic solutions for the first mode frequency at selected
probabilistic levels:

Theory: E;'act CDF based on analytical solution
Simulation: Monte Carlo (sample size = 5:000)
NESSUS: Mean-Value-First-Order (MVFO) solution

Advanced MVFO solution
First iteration solution

(See Figure V3-2)

REMARKS:

i. The perturbation range for the width must be very small, otherwise the

perturbation solutions may @iverge.

2. The median width (1.0 in) and thickness (0.98 in) were deliberately

chosen to be slightly different to validate the NESSUS's capability to

identify near roots in eigenvalue analysis.

Figure V3-2 CDF of First Mode Natural Frequency

O0

0
rr
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2_
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20O

Improved Me_n-Valua F3r_t-Order(/CVFO)

First Iteration
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I

240 280
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B
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320 380
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I i I L l

400 440 ¢80
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TITLE:

PROBLEM:

TYPE:

RESPONSES:

FEM MODEL:

VALIDATION CASE 5

Rotating Beam (plate elements)

Determine the probabilistic distributions of the
first bending natural frequency and the tip displacement
of a rotating beam

Centrifugal loading and stress stiffening effects

First b_nding frequency and tip displacement

NESSUS element type 75 - Four-node shell element
Number of elements = 40
Number of nodes = 55 (6 degrees-of-freedom per node)
Boundary condition: cantilevered

Figure VS-I. Sketch and FEM model

I

L

ANALYTICAL SOLUTION:

Assumed first bending mode shape: (x_X4 -4XLX×X_3 + 6XL_2_xX_2)/LXX_

Frequency = SQRT { 1.0384 i E _ t_X2 / (r_L_4) + (I.173+6.6/L) _ fX:

Tip displacement =

where

r _ (f:_2) $ (I_$3) _ (I + Ri/L) / (3.XE)

E = modulus

r = mass density

w = width

t = thickness

L = length

f = rotating frequency = 400 rad/sec
Ri= inside radius = 4.237 in.
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VALIDATION CASE 5 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES
Number of Random Variables = 5

Variables Distribution Median Coef. of Variation

Young's Modulus Lognormal 29E+06 psi 1(3%
Length Lognormal 3.844 in 5%
Thickness Lognormal 0.0416 in 5%
Width Lognormal 1.424 in 5%
Density Lognormal 9E-4 ib-sec=/in 4 5%
Rotating Frequency Fixed 4(30 rad/sec
Radius Ri_ -Fixed 4.237

_Note: see Figure V5-1

NESSUS CONVERGENCE/PERTURBATION SETTINGS (NESSUS 2.5)

i. Modal extraction:

XMODAL 3 0 i

2. Convergence criteria:

Increment 0:

XITER 0 5

20 I.E-04

Increment i:

*ITER 0 5

20 I.E-06

3. Perturbation Settings:

+0.001 standard deviation for length.

+0.1 standard deviations for the remaining random variables.

SOLUTION COMPARISON:

i. Deterministic solutions using the mean values of random variables:

Table V5-1 Comparisons of the deterministic solutions

Theory NESSUS NESSUS/Theory

Frequency 853.0 862.4 1.01

Tip displacement 2.4945E-4 2.4797E-4 0.994
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VALIDATION CASE 5 (Continued)

2. Probabilistic solutions for the frequency and the displacement

at selected probabilistic levels:

Simulation: Monte Carlo (sample size = 500_000)

NESSUS: Mean-Value-First-Order (MVFO) solution

Advanced MVFO solution

First iteration solution

(See Figures V5-2 and V5-3)

REMARKS: Date: i0/i6/87 NESSUS 2.5

I. The selection of the perturbation range for the length ks very cri

as illustrated in the following table:

Perturbation range Results

+i .0 std.

+0. i std.

+0. 001 std.

No solution (instability)

Incorrect solution (frequency decreasl

Correct solution

The NESSUS eigenvalue perturbation algorithm needs to be reviewed.

2. The "adjusted' exact curves in Figures V5-2 and V5-3 are defined u _

the ratios of the NESSUS mean solutions to the theoretical mean

solutions. (see Table VS-i)
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TITLE:

PROBLEM :

TYPE:

RESPONSES:

FEM MODEL:

VALIDATION CASE 6

Eigenvalue Analysis of Twisted Cantilever Plate

Determine the probabilistic distribution of the

natural frequencies

Natural Frequency

First bending and torsional modal frequencies

NESSUS element type 75 - Four-node shell element

Number of elements = 192

Number of nodes = 225 (6 degrees-of-freedom per node)

Boundary conditions: Cantilever

Figure I. Sketch and FEM model

Z

\

\
\

Y

X
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VALIDATION CASE 6 (Continued)

Figure 2. First bending and torsion mode
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VALIDATION CASE 6 (Continued)

ANALYTICAL SOLUTION:

First bending frequency (use flat plate solution)

3.31 _ SORT {E_hZ_2/(12_L_4;r_(l-v_2)}

where E = modulus

r = mass density (per unit volume)
h = thickness

L = length

v = Poisson's ratio

First torsional frequency: not available

Experimental results: see Reference

Reference: Macbain, J. C.; Kielb, R. E. & Leissa_ A. W., "Vibrations

Twisted Cantilevered Plates - Experimental Investigation"

29th International Gas Turbine Conference, Amsterdam, The
Netherland, 1984. ASME paper 84-GT-96

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES

Number of Random Variables = 3

Variables Distribution Median Coef. of Vari,

Young's Modulus Lognormal I0.34E+06 psi 3%

Thickness Lognormal 0.1 in 5%

Density Lognormal 2.61E-4 ib-sec=/in4 5%

Twisted Angle Deterministic 45 degrees -
Length Deterministic 6 in _

Width Deterministic 2.0 in -

Poisson's ratio Deterministic c).3

NESSUS CONVERGENCE/PERTURBATION SETTINGS
i. Convergence Limit:

Max. number of iterations allowed: 30

Max. allowable rel. error: 0.001

2. Perturbation Range:

+0.1 standard deviations for all the random variables.
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VALIDATION CASE 6 (Cont±nued)

Figure 3
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VALIDATION CASE 6 (Continued)

SOLUTION COMPARISON:

i. Deterministic solution using mean values of random variables:

Mode Experiment NESSUS % Difference

Bending 55.-"..8_ 572 .4 -._.3
Torsion ' 4718.2 4933. i 4.5

2. Probabilistic solutions for the first bending frequency at selecte,
probabilistic levels:

Theory: Exact CDF based on analytical solution

NESSUS: Mean-Value-First-Order (MVFO) solution

Advanced MVFO solution

(See Figure 3 for comparison)

Probabilistic solutions for the first torsior frequency at selecte_
probabilistic levels:

Exact: Only 50 % probability level experiment result availal

NESSUS: Mean-Value-First-Order (MVFO) solution

Advanced MVFO solution

(See Figure 4)

REMARKS:

!. The analytical solution for the first bending mode was based on tht

flat plate solution, therefore should be considered as approximate soZ

only. However, based on experimental investigation (see Ref.), the

analytical solution predicts well for different thickness.

2. For the first bending mode, a calibrated (or adjusted) exact"

probabilistic solution was derived by multiplying the experimental re_

by a factor of 1.033. This factor is the ratio of the FEM solution, c
at the mean values to the experimental result.

3. For the first torsional mode, the analytical solution for the flat

can not be used as an approximation because the experimental results
do not follow the analytical solution.
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TITLE:

PROBLEM:

TYPE:

RESPONSES:

FEM MODEL:

VALIDATION CASE 7

Static Analysis of Simply Supported Plate

A simply supported rectangular plate is subjected to point
loads. Determine the probabilistic distribution of the maximum
(center) displacement.

Static, correlated loading (Multiple zones)

Maximum displacement

NESSUS element type 75 - Four-node shell element
Number of elements = i00
Number of nodes = 121 (6 degrees-of-freedom per node)
Boundary conditions: Simply supported

Figure I. FEM Model

L

L

ANALYTICAL SOLUTION:

Max. displacement = 48 _ (l-v_2) / (pi_X4 _ E _ t_3 _L_2)

_[1574_(Pi+P2) + 2373_P3 + 676.6XP4 + 207.7_P6 + i6917XP7]

where E = modulus of elasticity

v = Poisson's ratio

t = thickness

L = Length

Reference: Timoshenko and Woinowsky-Krieger, Theory of Plates and Shells,

2nd ed., pill
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VALIDATION CASE 7 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES
Number of Random Variables (a) = 25

Variables Distribution Mean Coef. of Vat

Correlated Loads,
Pi(c) EVD(b) 15 ib 10%
P2(c) EVD 15 ib i(9%
P3 to P6 (d) Normal 10 ib 1(}%

J

P7 to P22 (e) Lognormal 2 Ib 10%

Young's Modulus Weibull ic).SE+06 psi 3%
Poisson's ratio Lognormal 0.25 3%

Thickness Lognormal O.i in 5%

Width Deterministic i0 in -

Notes:

Ca) Number of independent random variables = 10

(b) Type I extreme value distribution

(c) Independent

(d) Partially correlated with

correlation coefficients = exp{-Distance between loads/9}

(e) Fully correlated

NESSUS CONVERGENCE/PERTURBATION SETTINGS

i. Convergence Limit:

Max. number of iterations allowed: 100

Max. allowable tel. error in the residuals: 0.015

Max. allowable abs. error in the residuals: 15.0

Max. allowable tel. error in the r.m.s, of displacement: 0.002

Max. allowable tel. error in the r.m.s of strain energy: 0.002

2. Perturbation Range:

+0.1 standard deviations for all the independent random variables

SOLUTION COMPARISON:

i. Deterministic solution using mean values of random variables:

(node 61; component 3)

Tip Displacement

Theory 0.05297 in

NESSUS 0.05493 Ln

Difference 3.7%
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VALIDATION CASE 7 (Continued)

2. Probabilistic solutions at selected probabilistic levels:
Exact: Monte Carlo simulation (sample size= 500_000)

based on analytical solution
NESSUS: Mean-Value-First-Order (MVFO) solution

Advanced MVFOsolution
First iteration solution

(See Figures 2 for comparison)

REMARKS:
I. For the probabilistic _olution of displacement (Figure 2), a 'calibrated"

or adjusted exact" solution is derived by multiplying the theoretical

displacement by a factor of 1.036. This factor is the ratio of the

theoretical solution to the NESSUS solution, both computed at the mean

values of the random variables.

Figure 2.

W

2

D

_0

I-
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110

197

OR;GINAL D,_,--_

OF POOR QUALITY



TITLE:

PROBLEM:

TYPE:

RESPONSES:

FEM MODEL:

VALIDATION CASE 9

Static Analysis of Cylindrical Shell

A cylindrical shell is subjected to correlated point load_

Determine the probabilistic distribution of the maximum

displacement.

Static_ correlated loading

Di spl ace'men t

NESSUS element type 153 Four-node assumed strain axisymmet

Number of elements = 50

Number of nodes = 102 (2 degrees-of-freedom per node)

Boundary condition : constrined z-direction displacement
26 and 77

Figure V9 - i

JiIlJ

7

IIIII

ANALYTICAL MODEL:

Analytical Solution: See Reference
Reference: Timoshenko and Woinowsky-Krieger_ Theory of Plates and Sh_

2nd ed. , pill
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VALIDATION CASE 9 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES
Number of Random Variables = 8

Variables Distribution Mean Coef. of Variation

Correlated Loads,
F'I to F5Z
Young's Modulus
Thickness
Mean Radius
F'oisson's ratio

Normal 1000 ib 10%
Lognormal 29E+06 psi 3%
Lognormal 0.i in 5%
Lognormal 2.5 in 5%
Deterministic 0.3 0%

ZNote: Correlation coefficients = exp{-Distance between loads/0.2}

NESSUSCONVERGENCE/PERTURBATIONSETTINGS
I. Convergence Limit:

Max. number of iterations allowed: 120
Max. allowable tel. error in the residuals: 0.02

Max. allowable abs. error in the residuals: 20

Max. allowable tel. error in the r.m.s, of displacement: 0.0£

Max. allowable tel. error in the r.m.s of strain energy: 0.055

_._ Perturbation Range:

+0.1 standard deviations for all the independent random variables.

SOLUTION COMPARISON:

!. Deterministic solution using mean values of random variables:

Displacement

Theory 0. 00797 in.

NESSUS 0.0_'_8145 in.

Difference 2.2 %

2. F'robabilistic solutions at selected probabilistic levels:

Theory: Monte Carlo solution (sample size = 500,000)

NESSUS: Mean-Value-First-Order (MVFO) solution

Advanced MVFO solution

First iteration solution

(See Figure V9-2)
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VALIDATION CASE 9 (Continued)

REMARKS:

i. The perturbation range was chosen as 0.1 standard deviation for
each random variables. It was found that NESSUS/FEM solution required
very tight convergence limits for generating accurate Young's modulus
sensitivity data. Also, it was found that this convergence problem ca
be solved by increasing the perturbation range to 0.5 standard
deviation.

2. For the probabilistic solution (see Figure V9-2), a calibrated ex_
solution was derived by multiplying the theoretical solution by a fact
of 1.02. This factor is the ratio of the NESSUS solution to the

theoretical solution, both computed at the mean values.

3. Because thickness is not a standard input, it is necessary to provi

thickness information in terms of the coordinates (i.e., inside and o_

radius). Also, the perturbation solution for the thickness must be obt

by perturbing simultaneously the inside and the outside radius.
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VALIDATION CASE 9 (Continued)

Figure V9-2 NESSUS Validation
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TITLE:

PROBLEM:

TYPE:

RESPONSES:

FEM MODEL:

VALIDATION CASE I0

Stress Concentration Analysis

Two U notches in a member of rectangular section. Determil

the probabilistic distribution of the maximum stress.

Static loading

Maximum stress

NESSUS element type 3 - Four-node plane stress element

Number of elements = i17

Number of nodes = 140 (2 degrees-of-freedom per node)

Symmetry conditions along longitudinal axis of the member

Symmetry conditions across the center of the member

(one quarter of the member modeled)

Constant tensile stress applied at the y = max. boundary

Figure VIO-I

F-

, SY/_

J .Z

I

ANALYTICAL MODEL:

Analytical Solution: See Reference

Reference: R. J. Roark and W. C. Young, Formulas for Stress and Stra_

page 590
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VALIDATION CASE iO (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES
Number of Random Variables = i

Variables Distribution Mean Coef. of Variation

Radius Case A. Lognormal 2.4 2 %
Case B. Truncated Normal_ 2.4 2 %

Load Deterministic 8000 ib
thickness Deterministic 0.1 in

=Q_Note. Truncated at +/= 3 standard deviation ( 25 to =.55)

NESSUS CONVERGENCE/PERTURBATION SETTINGS

I. Convergence Limit:
Max. number of iterations allowed: 30

Max. allowable tel. error in the residuals: 0.03

Max. allowable abs. error in the residuals: 30.0

Max. allowable tel. error in the r.m.s, of displacement: 0.05

Max. allowable tel. error in the r.m.s of strain energy: 0.05

2. Perturbation Range:

+0.1 standard deviation

SOLUTION COMPARISON:

i. Deterministic solution using mean value of radius:

Stress

Theory 3545.6 psi

NESSUS 3562.2 psi

Difference 0.5%

2. Probabilistic solutions at selected probabilistic levels:

Theory: "Exact" CDF based on analytical'solution

NESSUS: Mean-Value-First-Order (MVFO) solution

Advanced MVFO solution

(See Figures 2 and 3 for comparison)
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VALIDATION CASE LO (Continued)

REMARKS:

i. For the probabilistic solution of stress (see Figures 2 and 3), a

'calibrated exact" solution was derived by multiplying the theoretica

stresses by a factor of 1.005. This factor is the ratio of the

theoretical solution to the NESSUS solution, both computed at the meat

values.

2. This validation problem involves only one random _ariabl_. In such

case, the advanced MVFO solution will yield exact solution. Therefore
the difference between the NESSUS solution and the exact solution is ¢

to the finite element solution. However, the error is small (about i%

stress).

3. Figure 3 is the result for the case where the radius has a truncate

distribution. This is the reason the resulting probability distributi(

also is truncated.
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A STRESS-BASED HYBRID FINITE ELEMENT METHOD FOR

COMPUTATIONAL ELASTO-PLASTIC ANALYSIS, USING AN ENDOCHRONIC THEORY

INTRODUCTION

In this section, the hybrid stress finite element will be formulated using

the endochronic theory. The iterative scheme for the solution of the nonlinear

system of equations that results will be presented with the mid-point radial

return algorithm used to improve the accuracy of the integrations.

The motivation for the stress based element is predicated on the

observation that the assumed-stress hybrid model has been demonstrated to give

more accurate displacements and stress solutions than the conventional

displacement model [_.i]. Due to the more accurate stress solution, the use of

the hybrid stress model for nonlinear problems, where the nonlinearity arises

from the coupling of material behavior to the stress field, should result in a
faster convergence.

The use of the classical models of plasticity in a tangent stiffness

approach have been reported by Yamada et al [_.2] and Luk [_.3]. Neyssen and

Beckers [_.4] reported an increased rate of convergence for a hybrid stress

finite element using the classical plasticity theory.

ASSUMPTIONS FOR THE HYBRID FORMULATION

......................

As in the displacement based method, one may assume that the loads and/or

displacements are applied incrementally. One must satisfy the following
equations within the volume of the element:

Linear Momentum Balance;

Angular Momentum Balance;

Strain - displacement relation;
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Constitutive relation;

e

Traction Boundary condition;

Displacement Boundary condition;

Inter-element Boundary conditions:

traction reciprocity

displacement

(_.7)

cx,. = U; _.t So (_. 8)

In the above, So £s defined to be on the boundary of the interface of two

elements "_ith the total boundary of an element defined as

S = Se U S. U S ' (_. ¢)

For the derivation of the element stiffness matrix one may assume the

following conditions hold a priori. For now, neglect body force, and assume a

stress field _6,)-which is selected to satisfy the angular momentum balance,

_d...-: _..-,, , and the linear momentum balance _,_': _ Likewise, assume that

the change in strain can be related to the change in stress through:

Note that in what follows 57_&_ was assumed to be composed of an elastic part
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and a plastic part with

?

e p

e_a"= S,i_ _ _ + 61_ _ _k_

where

2 _ (3,1 + 2,a) 2,_

WEAK FORM

(B. J2)

The following relations must be enforced through the variational statement:

i) compatibillty

2) traction reciprocity

3) traction boundary condition

4) displacement boundary condition

Defining _ to be a test function (weighting function) for the

compatibility equation (eq. _.15), the weighted form of the compatibility

relation becomes:

( I_. i'_ )
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To enforce the traction boundary condition one mayuse a test function of th_
sameclass as the displacemants. Let _£ be the welghttng function for the
enforcement of the traction boundary condition. Weighting the traction boundar)
condition with the test function gives:

&

(_. zo)

e

To enforce the traction reciprocity in weak form, one may use the weighting

funct£n _(; to get

d_ -

Here a_} represents the traction on one face of an element and _ 9%_

represents the traction of the corresponding face of an adjacent element. When

summed over all elements, the above reduced to the single term

Assuming that the constitutive relations are satisfied a priori, one may write

the weak form of the compatibility condition (_.21) as:

Sv I , L_, =o

Choosing the stress polynomials in such a way that the equilibrium equation was

satisfied by the test function allowed one to rewrite the combined weak form as

--[ _ _z d_ = 0
..2

(. B. z_,)

DISCRETE WEAK FORM

The stresses within an element were represented as a summation of equilibrate

polynomial stress modes, A, with undetermined parameters _# ;

Refer to Appendix B for the exact form of the polynomials used to formulate the
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hybrid element. To enforce compatibility in a weak form, one may use a test
function of the sameclass as the function for stress. Define [_ as the test
function in terms of the same polynomial stress modes, A_, with the arbitrary
parameters

The displacements were interpolated from the nodal values, z_, and the

standard isoparametrlc shape functions, _g& , as:

The trial functions for the displacements and the stresses were expressed in

terms of the parameters _j_ and m__. Define

as the test function in terms of the shape functions used in the interpolation

of the displacements. The parameters,$_, will be arbitrary except on the

portion of the boundary where the displacements are prescribed, in _hlch case

they will be zero.

Defining the matrix

Substitution of the discrete form for the test and trial functions

(Eq. _.25-_.28) expressed the combined 'weak form in terms of _'___and -___to give:

aS + $5 - a Tz %_ gammas = o

(e. )

and the matrix

One may express the combined weak form in matrix form as

CB._°-)
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The global stiffness matrix may be assembled with =__and ___,retained as
unknowns. The number of unknownsat the global level may be reduced by
eliminating the stress parameters are assumed only within the domain of the

element, with no coupling between elements. For arbitrary _f5 _ne must satisfy

Thus, m_ may he expressed in terms of the displacement of the element as

-I

For arbitrary _9, then one must have at the global level

_S

From the global stiffness matrix that results, _ is obtained, with stress

parameters computed from equation (_.3&).

Relaxing the requirement that the stress field wlthinthe element satisfy

the equilibrium equation a priori allows one to introduce a prescribed body

force, fL If the linear momentum balance conditions are relaxed and

expressed in weak form through the weighting function $_L the _eak form

becomes:

/-

# e

One has by adding to the combined weak form:

%/

Which after applying Green's theorem reduces to:
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After substitution of the discrete form of the trial and test function one may
express the combined weak form as:

where
C_.3q b3

Note that the above formulation, while possessing the same number of unknowns as

the weak form where the stress was equilibrated (Eq. 3.39),was substantially

less costly to implement numerically. The saving came from the volumetric

integration to formulate the matrix _. Performing a volumetric integration

allowed for the evaluation of the _G matrix at the same time as the vo!umetrfc

integration for the matrix _. This means the same Gauss points may be used for

the integration of _ and _, as opposed to having to define Causs points within
the volume for H as well as on the surface for C

RESIDUAL CALCULATION AND ITERATION SCHEME

The tangent stiffness matrix expressed in equation (_.35) allowed one to

compute the change in stress and the change in displacement based on the

material parameters at state n being approximately constant over the increment.

Due to the linearization of the material behavior, the actual state of stress

and the actual displacements at state n deviated from the nonlinear path that
material should have followed.

In addition to the errors Introduced in the llnearization of the material

parameters, other errors are generated. For example, if one assumes that the

behavior was plastic (perhaps the last load increment caused plastic

deformation) but , the next loading increment unloaded the point from the yield

surface, then the wrong tangent to the stress-straln relation would have been

taken. Likewise, if the material was near the yield point, and the next loading

increment caused it to go from elastic material behavior to plastic behavior,

then the assumption of elastic material behavior for th_ increment would not be
valid over the entire increment.

For the case where a plastic stress/straln increment was assumed, but the

resulting load increment moved the stress point to inside the yield surface,

one was left with no alternative but to'reformulate the stiffness matrix to

reflect the correct tangent to the material properties. One must then

recalculate the change in stress based on the correct stress-strain path. For

the case where the path was part elastic and part plastic one must divide the
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stress into two parts, applying the first part as an elastic process, then all

the second part to be applied in the residual calculation, j

To illustrate the part elastlc-part plastic case, assume that at sate n,

no plastic strain has occured. Let the next load increment be such that only a

part of the stress increment may be applied elastically. For a given change in

body forces and change in surface tractions assume that the corresponding

change in stress predicted by the elastic stiffness formulation is such that

F=(dA + _¢_ - oe ) :( A -6_
2

)- R _ o (_..o)

i.e. the stress point, if elastic material behavior is assumed, would fall to

the outside of the yield surface. At a point, assume that the stress dA lies o

the inside of the yield surface. Let _ be the point on the yield surface whet

the trajectory ofdA+a _ intersects the yield surface. The point of intersection

may be computed as

where

r= g
)

Only the portion of "_ that is required to move the stress point to the ylel

surface is applied, with the rest of the stress that would occur during the

plastic material behavior neglected for now. The resulting stress field will

not be in equilibrium; however, one may compute the out-of-balance loads neede

to produce an equilibrated stress field at state n_!. For equilibrium at n-i
one should have:

-,%_ %

4,_- _ +£ = 0" J," (_._3 _-)

Weighting the above with the test function _,will give after application of
Creen's theorem:

= q s%

The out-of-balance loads will be:

= -- (B. ÷s)
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For the points where the elastically applied stress exceeded the yield stress,

the process should be plastic. The stiffness matrix may be updated to reflect

the plastic process and allow the out-of-balance loads to follow the plastic

stress-straln path. This wi!i give a correction to the displacements as

and a correction to the stress of

with the stress at n÷l being given by:

"" # ' )

One may compute the strain at n*l from the stress using the constitutive

relation as:

The displacements at n+l will he given as

Due to the above approach of splitting the stress into two parts, there will be

errors in compatibility. At state n÷l one should have

_ I _+1

.where _z_" is computed from the stress through the constitutive relation.

To enforce this condition, a weighting function of the same class as the

function for the stress field may he used. The following load due to the error

in compatibility is obtained:

Application of the above residual to the system will give displacements that

are compatible with the strains obtained _rom the stress field. There will be

some redistribution of the stress when the strain residual is applied, but for
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the most part, the displacements will change more during each iteration than
the stress. One mayapply both P6and _¢ at the same time, and continue the
iteration process until the norm of the displacement does not change
significantly.

CONSISTENCYCONDITION

With the above hybrid method, unless the stress/strain increments are vet

small, there will be errors in the consistency condition.

The errors may be reduced by using a mld-polnt rule for the integration of

the strains, the plastic strain may be computed from the stress as:

For the finite change _ one may use the approximation

where

Likewise, the change in strain for a plastic process may be approximated as:

Using the mid-point rule will lead to compatibility errors. However, the

application of the residual #4 will correct the errors that accumulate due to

compatibility.

The final system of equations that result when both __ and __ are appli_

during the iteration process will have the form

I

o

x

% +,,r
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Here, the matrix _ is constant and only need be evaluated once. The matrix H
depends on the material behavior, and must be evaluated for each iteration.----

updated as:

d = _ + mdA_ + _m6

As each iteration, i, is carried out, the stress and displacement is

;

The strain must be computed in two parts with the elastic part given by

Af, B =

and the plastic part by

CONSTITUTIVE EQUATIONS

The equations used to characterize the behavior of a material and its

reaction to applied loads are called constitutive equations, since they

describe the macroscopic behavior resulting from the internal constitution

of the material. The objective of a constitutive relation is to provide a

good description of the relationship between stress and strain for a given

material. The problem is compilcated by the fact that different classes of

materials exhibit different characteristics. The goal of well-formulated

constitutive theory is to allow for all of the different observed phenomena
to be described by the same mathematical formulation.

The mathematical model governing the elastlc-plastlc behavior of solids,

in particular, should have the following key ingredients: i) a relationship

between stress and strain to describe the behavior under elastic conditions;

ll) a criterion which will indicate the level of stress at which plastic

strains will occur; ill) laws governing the growth of plastic strains as

the material is stressed/strained beyond the elastic rWnge; iv) laws governing

the change in elastic limit as plasticity develops (strain harding, Baushinger
effect, strain softening).

The general theory of internal variables has played a key role in the

development of more and more realistic constitutive models to characterize

inelastic material behavior. Typical internal variables that are widely

employed include i) the so-called 'back-stress" (the tensor locating the

center of the yield surface in stress-space),il) the parameters that
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characterize the expansion of the yield surface, Ill) the parameters that
characterize the "bounding-surface" in multl-yield-surface theories of
plasticity [_-_-_1, iv) the 'drag-stress" used to characterize the creep
suEface. ..

Of the constitutive relations proposed for inelasticity, the 'internal-

time" (endochronl¢) theory of Valanls[_.10], Watanabe and Atlur£ [_.fl], The

Multl-yield-surface theories of Morz [_._,_._, Dafalias & Popov [_'7' _._3,

Kreig [_-_], and the internal variable theories of Onat [_-I_.L_,$.I_],

Facdshlshen & Onat [_-I_], Onat & Fardshlsheh [_.i_], Chaboche [_. 173,

Chaboche & Rousselier [_._] all appear on the surface to be unrelated to

each other and to be based on totally diverse concepts. The work of Watanabe

& Atluri [_._] places all the relations in perspective by showing that the

"internal-tlme' theory [_.Io,_.II] is general enough to encompass all other

relations reported in the literature as special cases. Likewise,CB- _3 shows

that their internal time theory as expressed in differential form is no more

difficult to implement numerical than the classical Prager-Ziegler kinematic

harding theory.

The 'Endochronlc Theory" was presented by Valanis [_._0,_._] in 1971

and held out the prospect of explaining the experimentally observed phenomena

of cross-hardening, cyclic hardening, and initial strain problems. While the

initial version of the theory was subject to much criticism [_._.], certain °

features of the theory allow for constitutive laws that are better in modelin_

observed phenomena in cyclic plasticity of metals than the classical elasto-

plastic constitutive relations.

The new intrinsic time model presented by Valanls [_._] in 1980 rectlfle

some of the shortcomings of the earlier theory. The work of Valanls and Fan

[_.!_] presented an incremental or differential form of the integral relation

of stress and strain for plasticity [_.l_J. The computational implementation

of the differential relation in [_._] is not in a standard 'tangent stiffness

format, thus, a finite element formulation in thetraditional sense is not

possible. Watanabe & Atluri [_.11]present an alternative derivation of the

differential stress-strain relation using the concept of intrinsic time

dependent on plastic strain [_._]. This alternative derivation presents

the endochronic theory in a structure that is similar to that of classical

plasticity, thus, leading to a stiffness type finite element formulation.

While the endochronlc relation as developed by Watanabe &Atluri C_.LI]

is similar in its structure to that of classical plasticity, there are

several novel advantages present in the endochronic theory not present in the

classical plasticity theory. The ability to model test data for both monotonic

or cyclic plasticity as accurately as possible, with a minimal number of

material parameters makes the endochronic theory a simple theory to implement

in a finite element code.

Summary of the Endochronic theory

The devlatorlc stress, _i, is related to the mean stress, _ , by

f
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with

The back-stress, _, is defined as the center of the yield surfsce in

devlatorlc stress space. One may, for the infinitesimal strain problem,

let the differential strain tensor, d_ , be composed of elastic and plastic

components,

For metals, the assumption of plastic strains being only devlatorlc in

nature allows one to write the differential of strain as:

e

Jfq = Je_i + d e_i + Sq 3

where _J is the deviatoric component of strain.

Following Watanabe and Atluri [_.I[], one may define at a material point

, an intrinsic time measure, _ , related to the magnitude of plastic strain
that has accumulated at that point as:

(_. _

j_ = ( je_. affr ) (B. _7 )

As in the classical theories of plasticity, the isotropic expansion of the

yield surface is asumed to be a function of the magnitude of plastic strain.

The isotropic expansion is introduced though the non-negative function

f(_) with f(O) - 1. (_._)

A differential intrinsic time,

t

is defined from the magnitude of plastic strain and the function describing

the growth of the yield surface. From Valanis [_-lO], and modified by

Watanabe and Atluri [_._]], let the deviatorlc stress be related to the

plastic strain through

.z F

d'" % = _7 _ (_(_-=) - dz (B.-7o1
" _Z
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In order to recover a yield surface, allow the kernal, _(z), to be of the

singular form:

(_(z)- {_. (z)- [_(=) (5.ql

where, [(z) is a Dirac delta function and _,(z) is a non-singular function,

Substitution of (_._p into (B-7_ results in the deviatoric stress being

related through the equation as

P
de

Jz ~
<_TZ

with

CIz

to give

5-
= - (_.-I#)

Let 5 r =2_/@. be the initial radius of a yield surface, and let be the radius

of the yield surface as plasticity develops.

In order to distinguish an elastic process from a plastic process,

one may look at the conditions required for d_ to be non-zero. From the

definition of the differential intrinsic time measure the magnitude of

plastic strain is expressed as:

During plastic flow, from the definition of the direction of plastic strain,

one has, by definition

r P

~ .____ = /
Jz; d_

or

or
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Equation (_'7_) may be viewed as the equivalent of the classical Von Mises
yield criterion. Thus, if plastic flow occurred during an increment of
stress/strain, the above equations (_.7_-_.-_) should be satisfied throughout,
and at the end of the increment.

where

The direction of plastic strain is given by

/ =

which may be expressed as

In equation (_'_I), the tensor _N Is analogous to the normal to the

classical yield surface. From the deflnltLon of d_ , for admissible plastic
flow, _ must be non-negatlve.

d_ > 0

d_ < 0

plastic flow admissible

plastic flow not admissible
(5.E 

Taking the trace of both sides of Eq. (_'_I) with the differential of

plastic strain, d _ , gives the requirement of admissible plastic flow

in terms of the normal to the yield surface and the plastic strain.

t

Equation (_._) is not a convenient condition to apply within a finite

element codes, since the finite element code will return directly d_ not

d_ • Therefore, the admissible flow condition is best expressed in t--erms

of the differential of total strain, dr.

To express d in terms of d_ directly requires differentiation of

equations (_._0) with respect to d_.

This gives:
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z p r

58 d_ / ors do _

tF

The rate of devlatorlc stress with respect to the magnitude of plastic
strain, d s_, may be obtalned by noting that the plastic strain is
expressed as

dt t' ,:1£' dS_..
_ 2,1.,/,

which may be expressed as

? I

cle d_ dS

or

,' p

The tensor, _, which is analogous to the center of the yield surface in
stress space is expressed by the integral

F

= - , dz
l

a2

Recall that Leibnltz's rule allows one to differentiate under an integral
as

-- _(X,A) _A

One may express the rate of change of the center of the yield surface
with respect to the magnitude of plastic strain as

where _ 5

,r z p

= f. .z" z"
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Substitution of (_'_7) and (_._0) into (_.B_ gives after rearrangement:

o

-- -=-dg

o d_£ r

+ 51 j_, {(5) J_

Taking trace of both sides with normal,N, gives

(%._x)

Note that since

it follows that

The magnituge of plastic strain expressed in terms of the total strain and

the normal to the yield surface is given by:

/

d£ "_

C

where

o /

_F f (B-_7)

For an increment in total strain _,_ the criterion for establishing whether

or not a process leads to an admissible plastic strain is expressed now in
terms of __ instead of d_p.

hold:
To summarize, for plastic strain to be admissible, the following must

2

= ,.
(5-_B)
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and

Otherwise, an elastic process will occur if

2

or

and

(s-q) • (

Here _ is viewed as the back stress, or in the geometric description of

the yield surface, as the center of the yield surface in devlatoric stress-

space. R is viewed as the radius of the yield surface. Note that when a

monotonically increasing load is applied, the stress and the back stress are

co-axial, and the simple picture of the yield cylinder moving in stress space

is possible. However, in the general case of non-proportional loading, the

back stress and the yielding stress are not co-axial and the geometric pictur_

cannot be drawn. In the case where _6and _are not coaxial, the back stress

does not reduce to three principal directions in stress space. Instead, it

is composed of six components. One may still get an idea of how the yield

surface is translating, if one plots a projection of the yield surface.

An incremental (or rate or differential) form of the stress-strain

relation in the presence of plastic deformation is required for formulation

of the computational scheme in a variational sense: Recall that the total

differential strain is assumed to be made up of an elastic part plus an

inelastic part. From Eq. 1.23 the plastic strain is expressed in terms of

the total strain and the devlatoric stress as:

The plastic strain may be expressed in terms of the magnitude of

plastic strain, d_ , and the normal to the yield surface, _- Using Equation

(_._V), (B._) in (_._, the deviatoric stress is expressed in terms of

the deviatoric strain:

!

N
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Or

Js= ag'-

The total differential of stress becomes:

(_.I_)

where

" f'C )
c = I÷ e,(°) + o - 4.

'_ 5 z ") P
" ° d :; clz' dz

(_ ._uO

with the rate form for back stress expressed as:

Defining the correct form for _,(z) and f(_), allows the yleid surface

expansion and translation of the yield surface to be prescribed tn any
manner that one wishes.

(Z-I_7)

The most convenient form for _ (z) is expressed as a sum of exponential
terms, such as

-gk Z

J.

By proper choice of the constants _tand _; , the rate of kinematic

hardening may be controlled by the form of f(_). For linear isotroplc
hardening, one may use:

f

where _ is the rate of isotroplc expansion of the yield surface. For

non-linear isotroplc hardening, Watanabe and Atluri have suggested the
form
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_.(,_) = o. + (1- _) c (g.llo)

where y and a are chosen to fit a given material.

For the exact procedure used to select the constants _i ' G2, and

(or y, and a) refer to Appendix A where the incremental form for the case

of uniaxlal tension is expressed in terms of _, and _, • While all that is

required for determining the constants is the uniaxial tension test, the

test must be perfqrmed over several cycles of load so that the hysteresis

loops of stress/strain are available. This cycling is needed to separate

the Baushlnger effect from the Isotropic expansion.

With C,(z) expressed as an exponential form as in (_.I0_, the rate form

of the endochronlc theory so described reduces to

with

2_

and

with g-l if the increment in strain results in a plastic process or P,,O

if the increment is an elastic process. Here N may be viewed as the normal

to a yield surface in stress space as in classical plasticity. The rate

of growth of the back stress is given by

P

_ -a;Cz-z') d_' "d_, = z =_ al fl_ e - dz
il_ o -- /dz (g'll/r)

or

with the plastic stral.n given by

f I

d_- = - N (_" dE,) (B. Ilt,)

Note that the endochronic theory departs from the classical plasticity

theory in the sense that the back stress is an assumed quantity in the
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classical development. Whereas in the endochronlc theory, the evolution
of the back stress arises from the assumption of the stress being related
to an intrinsic time measure. The rate form of the endochronlc theery is
summarized in the table below:

Table 1 : Summaryof the Internal-Time Theory of Plasticity

Endochronic Theory :

where 7A , )- are lame constants

{_) = I÷__ (linear).."or
-'r_

Tf(_) = _+ ((- _) 8 (exponential)

0

C= 1*6(o) + -. - - +
"_ [_(_) =,_

o

?(z)- _o S(z) + _,(z) _- Z f,_ e
.%

-8,. 2

_= Z_z_ ; k = _- k :

Kate of Kinematic Harding:

if)
80< = _ _,; j£r 0.: o<

~ £
3

Y---- oz
Z :Y" ~

(de e :d E )
k

cO

: = _,t4 ?_,:
"- £

Rate of lsotropic Hardening:

/" -r I _ 2 ....

O___
de - >-

J- )

I

(linear f) o ,P _

(exponential f) -r5
o

d

I
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The form of the endochronlc theory needed to produce the classical

forms of plasticity is presented in Table 1,2.

Table 1.2 Comparison of The Classical Theories of

Plasticity with the Endochronlc Theories.
t

Classical Theories of Plasticity:

i) Isotroplc Hardenlng(Prandlt and Reuss)

l

= _/Za1_?- rate of harding

_- equivalent stress

{f- eq. plastic strain

d5 = 2_x d f - - - -

Endochronlc Theory

E,(z) = k ¢z)= ,,_ = o

li) Linear Kinematic Harding (Prager [_!_)

=

,, E.,t"a_= C d

Endochronlc Theory

Cz)= C,o = C"/:,_ ; k = o

/

(s--_) " d_

" °; % = d.

eC_ ) = ] o7

ill) Non-llnear Kinematic Harding

(Mroz-Shrlvastava-Dubey _._ )
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(Eisenbe=g and Phillips [_ )

iv) CombinedIsotroplc and Kinematic Hardening

(Chabocheand Rousseiiec [_i_])

Kinematic Harding:

(f and _ are constants;

Isotropic Hardening:

b, Q are constants

v) Perfect Plasticity

C

' c=/.o ; itch) = /,o ; = o

SELECTION OF POLYNOMIALS FOR INTERPOLATION OF THE STRESS

The presence of unwanted kinematic mechanism modes in the stress-based

element is a primary concern when selecting the polynomial basis functions

used to interpolate the stress field within an stress-based hybrid element.

The kinematic mechanism modes that may arise due to a poor choice of stress

polynomials are not unlike the mechanisms that may result when a displacement

based element is subjected to reduced integration.

The criteria for the stability and convergence of discrete variational

problems with Lagrange multipliers was the focus of the fundamental work of

Ladyzhenskaya, Babuska and Brezzi (LBB) [B._0]. The LBB condition may be

used as an a posteciori check of a formulation. While the work of LBB was

limited to a variational statement with only one parameter, the multl-fleld

case was the focus of the work of Xue and Atluri [B._]. While the
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satisfaction of the LBB condition will guarantee the convergence and
stability of the formulation, it does not specify how the condition should
be met. The work of Punch [B._ and Punch and Atluri [B._, addressed the
problem of establishing criteria for the selection of stress polynomials
such that the resulting element will be stable, invariant and least order.

In general, for a stress-based hybrid formulation, if the number of
stress parameters _ for an element is s, then the matrix H should be a

(sxs) positive definite symmetric matrix. The element stif[ness matrix

- CZE't_ should have a rank of (d-r) where d is the number of generalized

nodal dlsplacement'and r is the number of rigid body modes. Thus, the

matrix G,associating the assumed stress and displacement fields, is the most

critical component of the formulation - the (sxd) homogeneous equation

_c q - 0 (s It7l

should have, as its nontrivial solutions, only the r rigid body modes q By

virtue of the divergence theorem and the equilibrated stress field _f , this
expression can be written as

where the following relation holds,

_" 0 /oi-

With _7_" (_h)-0 for r rigid modes q_, the rank of G and consequently the

overall rank of K, which it determines, is the minimum of (s,d-r) at best.

For a formulation free of spurious energy modes, the minimum rank must be (d-r)

and the number of chosen stress modes must therefore satisfy

Noting that each extra term adds more stiffness [_.5_], least-order selections

(s - d-r) are considered to be best and are, of course, optimal with respect

to compute resources.

The G matrix not only governs the existence, but is also central to the

determination of convergence and stability through the LBB condition [ _._? ].

This convergence condition of functional analysis features G on a domain

and states that, if there exists a _> 0 such that
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then the finite element problem has a unique solution. (_.I[ 7) and (_.i_l) are
necessary and sufficient conditions for stability, respectively. When_ is
independent of mesh parameter h, convergence is then established. However,
this theory only provides an posteriori check on a particular finite element
formulation since the value and meshdependenceof _ must be ascertained
numerically in each case.

In addition to accomadating all reasonable load distributions, the
chosen stress modes must be nonorthongal to the strain field in order to
eliminate spurious zero energy modesand guarantee convergence. One possible
approach to the eradication of mechanismslies in the painstaking assembly
of the G matrix from complete equilibrated polynomial stress, and strain
tensors derived from the element displacement field. The rank of G may be
computed by Gaussian elimination and stresses added or removed until the
desired (d-r) value is reached. This rudimentary procedure, nevertheless,
fails to address the requirement of coordinate invarlance in the overall
stress interpolation, as a result of which further criteria must be applied.

Coordinate invariance entails certain symmetry relations between the
coordinates, relations which are governed by symmetry group theory. Although
this theory applies exactly to perfect squares and cubes only, it nontheless
provides a very effective approximation for distorted elements and generates
a convenient sparse quasi-dlagonal G matrix from which stress selections can
easily be made. The mathematical foundation appears fully in [ _. _h ], and -
the complete derivation for plane elements, as well as three-dlmenslonal
bricks, can be found in [_.52,B._].

Considerable success has been achieved in approaches ,where the equilibrium
constraints are relaxed on some [:_._a_]or all stress terms [ .-J-] by meansof
displacement field Lagrange multipliers. Taking advantage of the variation of
natural coordinates in curvilinear elements, the stress tensor is expected
as an unequilibrated summation of natural coordinate polynomials Af_._ with
unknown_ ,

Define
Jr'

where _ is interpolation functions for nodal displacement. With matrix C

in this form, the derivation of stress modes for this hybrid stress

formulation with a posteriori equilibrated local stress field can follow

the procedures used by the formulation with a priori eq0ilibrated stress

stress field. The foregoing least-order stress polynomial selections in

natural coordinate variable _f are introduced into f;$_, but this do not

necessarily form stable, irreducible, invariant interpolations. However, it

has been demonstrated in [_-_%,_.!_] that, for the curvillnear elements if the

stress mode is chosen to be of the same polynomial form as that of the stress

mode which is derived by using group theory for squares and cubes, then the

rank o_ G is maintained to be (d-r) even for very severely distorted elements

Further, it has been clearly demonstrated [_._i,_.T!] that the least-order,
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invariant, isoparametric curvilinear hybrid elements are less distortlon-
-sensitive and lead to more accurate results compared to the standard
displacement elements in a variety of examples.

For the present 16-node tsoparametric hybrid element, 62 stress component
( - 48-6) should be chosen to form the least-order, stable, invariant element.
The following stress polynomial selection was made based upon the suggestions

provided in [ B_ ]"

(

INTERPOLATION FUNCTIONS FOR DISPLACEMENT

Standard Isoparametrlc shape functions _ere chosen for this 16-node

stress-based hybrid element. The local coordinates and nodal numbering

are shown in Fig. _, and the 16 shape functions are presented as following:
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USERMANUAL

There are two keywords and somemodifications in the parameter data section
of NESSUSinput data file.

. ELEMENTS

There is one more element type

50 : 16-node hybrid shell element. None of the five element properties are

effected •

g

. HYBR

This option enables the hybrid shell element. One parameter is required

parameter I : "'42"" , NSTSFN , number of stress function parameters.

. ENDO

This keyword invokes the endochronlc theory, no parameter is required.

NOTE : When _ HYBR is flagged , . BFCS can not be used.

There are two new keywords in the model data section of NESSUS input data

file.

. HYPR

This data segment is used to specify the material properties of the hybrid

shell element. Five real numbers are required. These are (i) thickness (dummy

(2) Young's modulus, (3) Poisson's ratio, (4) initial yield stress, and (5)

• _--7-?- strain hardening coefficient.
If'. ENDO is flagged, the last two property data are ignored.
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. ENDO

This data segment is used to specify the endochronlc theory properties of the
hybrid shell element. A maximumof ten property data can be specified.

In the linear strain hardening case, the first data is _o= _-_ _ 'm

oNe second data is W" - I _ , and the others are dummy. 2_ _-_

. PROP

If * HYPK is flagged, . PROP is ignored.
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SUMMARYOF TAPES

There are eight new data files in the hybrid shell element portion of NESSU_

(I) HYBR.DAT (Tape 3)

This files contaLns Hiand C for each element. C is calculated at the

begining. H'Is calculated attach iteration-

(2) STRES.DAT (Tape 2)

This files contains the stress vector of each Gaussian point.

(3) RES.DAT (Tape 7)

This file contains residual forces arising from enforcing the compatibility

condition.

k v

These residual forces are used to calculate , the stress parameter

increment.

(4) EPIND.DAT (Tape i0)

This file contains an index of each Causslan point indicating whether it is

elastic or plastic.

(5) STRAN.DAT (Tape 13)

This file contains the strain vector of each Caussian point

vector are calculated from _- _ relations.

These strain
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IMPORTANTSUBROUTINESAND VARIABLES

i) CAZETA

This subroutine is to calculate the incremental internal time parameter

DEPL : incremental plastic strain

DZETA : incremental internal time parameter

2) D3DI6N

This subroutine is to calculate the shape function derivative for the !6-nc

shell element. All the variables are the same as the other simillar subrouti_

3) FORMAM

This subroutine is to set up the A matrix in each Caussian point.

G, H, and Q : natural coordinate of the gaussian points

D : A matrix

XINVER : base vectors of the centrial curvillnear coordinate

NSTSFN : number of stress function been used, 42

4) FOmMBV

This subroutine is to calculate incremental stress parameter

BETAIN

DISWKK

ELEMI

ELEM2

KSTRAN

: incremental stress parameter

: displacement increment

: H matrix

: G matrix

: residual force arlsed from compatibility

4) FO_CM

This subroutine is to set up the elastic strain-stress relation matrix, C, at

each Caussian point.

CMATRX : C matrix

CHAR : elastic material property at Caussian points

5) FORMGM

This subroutine is to set up the C matrix. It is called only once for each

element.

CMATPO_ : G matrix
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(6) EPSN.DAT(Tape 22)

This file contains the total plastic strain vector and the incremental plastic
strain vector of each Caussian point.

(7) ZETA.DAT (Tape 14)

This file contains the total internal time parameter _ and the incremental
internal time parameter _ of each Caussian point.

(8) VALGLO.DAT (Tape 30)

This file contains the accumulated nodal values of _ , _ , _'_ , and _ These

values must be divided by the number of elements which contain the node to get
the average values at the node.
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This subroutine is to set up the plastic stress-straln relation matrix, D

DMATKX

HYSIG

ENCHAK

STEMP

: D matrix

: stress vector

: endochronic theory property

: stress deviator

13) PLASTC
t

This subroutine is to set up the plastic straln-stress relation matrix, C.

CMATKX : C matrix

14) KESID

This subroutine is to set up the residual forces arised from equilibrium a

compatibility.

DISTOT

DISINC

KXII

XP

XP2

STKNI

STRN2

: total displacement

: total incremental displacement up to iteraton i

: incremental displcaement of iteration i

: equilibrium residual force , total residual force later

: compatibility residual force

: strain ( straln-dlsplacement )

: strain ( strain-stress )

15) S3DI6N

This subroutine is to set up the shape functions of !6-node shell element.A

the variables are the same as the other similiar subroutines.

16) SICBAK

This subroutine is to calculate the effective stress and stress deviator.

SIC

S

SEQ

: stress vector

: stress deviator

: effective stress

17) UPEPSN

This subroutine is to update the total plastic strain and total internal tin

parameter after each load increment.

18) YIEL2

This subroutine is to calculate the radius of yield surface from internal
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COOR : coordinate of each nodal point in one element

6) FORMHM

This subroutine is to set up the H matrix. It is called in each iteration foreach element.

HMATRX

EPIND
: H matrix

: index of elastlc/plastic for each Causslan point

7) CHOOK

This subroutine is to set up the elastic stress-strain relation matrix, D ateach Gaussian point.

DMATR.K : D matrix

8) NYOUT

This subroutine print out the displacement of the hybrid shell element.

9) HYSTIF

This subroutine is to set up the element stiffness matrix for the hybridshell element.

EHSTIF

ELMRHS
: element stiffness matrix

: element force vector ; it is set to zero now

i0) HYSTSS

This subroutine is to calculate the stress, strain, and plastic strain.

EPSN

SIC

SICTT

STRN2

DDSTRN

ZETA

DEPSN

DZETA

: total plastic strain

: stress in iteration i-i

: stress in iteration i

: strain came form strain-stress relations
: incremental strain

: total interal time parameter

: incremental plastic strain

: incremental interal time parameter

ii) LSNODE

This subroutine is to calculate nodal values of stress, strain, plastic
strain and internal time parameter.

12) PLADMT
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time parameter ZETA.

SYT : radius of yield surface

FP : strain hardening coefficient
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SUMMARYOF LOGICFORSUBROUTINEHYSTSS

The Causslan point had previously, yielded. Now
check to see if _l> _$L-I )where _: is the
effective stress

radius of yield surface of itera

NO

The Causslan point is unloading

elastically- Calculate _ = C _Q-L

and return

YES

The Caussian point had yielded

previously and the stress is stl

increasing. Calculate _ci ._.

Where "_

dE- = =

_-% i

OR!GINAL PAGE iS

OF POOR QUALITY
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SUMMARYOF LOCICFORSUBROUTINEHYSTSS
(continue)

The Caussian point had not previously yielded.
Now check to see If<_[> _L"

,j (-¢1

NO

The Gaussian point is still

elastic. Calculate _ _ _ C_ _
and return _ _

YES

The Caussian point has yielded

during the iteration. The portion

of the stress greater than the

yield value must be reduced to the

yield surface. The reduction

factor R is given from fig. below

to be R = AB/AC Then use

conventional dlsplcement based

plastic scheme to calculate the

overshot portlon.of _'and

corresponding &_.

A
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1.0 INTRODUCTION

i.i Introductory Remarks

Monte Carlo traditionally has been considered to be a "last resort"

method for solving a probability or statistics problem because of high

cost relative to accuracy of the results. However, in recent times a

combination of the development of new efficient numerical techniques

and new digital computing h_rdware have made Monte Carlo more attractive.

Presented in this report are descriptions of the following Monte

Carlo programs dedicated to probabi!istic structural analysis.

i. "Conventional" Monte Carlo

2. Variance reduction using aneithetic variates

3. Direct evaluation of the probability integral

4. The Harbitz method

Provided in the following sections are descriptions of how each method

works as well as a comprehensive study of the performance of each.

1.2 The Basic Problems

Consider the random variable Z as a function of the random vector

.X)
n= (X I, X 2,

z = h(X)

The distribution of each X. is kno_m.
I

I r is assumed that all X. are
- I

mutually independent.

One problem of probabilistic mechanics and design is to compute a/

<

p = P[h(X) - ho]

point probability,

(1.1)

(1.2)
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For example, p could re_resent the probability of exceedance o= a deflec-

tion or perhaps the Drobabi!ity of failure.

The second problem is the extension of the first to the construction

of a cumulative distribution function.

<

F_(:) = _[h,_) - :] _z 3)
g

Clearly the two Drob!ems are identical, but optima! strategies for analysis

For exam,!e, to construct the CDF, one ogtion would be zomay diff_r. .

obtain point estimates of F. at selected values of z, then fit a curve

through the points. A second option would be to conszrucr an emDirizal

distribution function from a large sample of Z_ (See Sec. Z.4).

1.3 Random Samples

Tne' basts' zor" Monte Carlo ___,_.__=_m,l_-;o_.,___ a standard unifoznr, diszrib,,-

_ion random numb =-___enera: _.. Mezhods c: _enera:_---= u_:o --........ variates are

.... _-= calculations of -_<idues of modulus m from -
_enera!!y based on _e_u__-_ ....

linear zransfo_acion [ !]. Most large com_uters have such a generator

as a library function.

A variety of methods can be employed to generate variates from the

distributions. Presented in Appendix A are aigorithms used for the program

presented herein.

O_i_AL PAGE IS
OF PO0_ QUALITY
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"CONVENTIONAL"MONTECARLO

Point Probabi!itv Estimates by Conventional Monte Carlo Using the

Bernoulli Parameter

Consider a function, h(_), where _X is a vector of random variables,

all having known distributions. It is required to compute,

p = P[h(_) _ h ]
O

(2.1)

The problem can be reformulated as

p = P[g(_) J 0] (2.2)

where g(_), called the "performance function," is

g(_) = h(_) - h O
(2.3)

In a direct Monte Carlo scheme, a sequence of K random vectors,

X., can be sampled, and in turn, a sequence of gi' i = i, K computed.%1

Y. = [i if _ <
°i - 01

[0 if gi > 0

Define

(2.4)

Thus, Y. has a Bernoulli distribution
l

P(Y. = i) = p
1

(2.5)

P(Y. = 0) = i - p
i

where the Bernoulli parameter p is the same p as in Eq. 2.1.

The maximum likelihood estimate (MLE) of p is [ 5 ]',

K
• i
P :[ [Y

i= i i
(2.6)
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<

_Yi is just the total number o_ gi - 0, denoted as No.But

just the fraction of the gi's less than zero

A N
o

P = N

^

Thus, p is

(2.7)

A flow diagram of conventional Monte Carlo is given in Fig. 2.1.

A listing of a computer program for conventional Monte Carlo employing

the Bernoulli parameter is provided in Appendix B and anexam_le of the

output is shown in Fig. 2.2.

2.2 Confidence Intervals on the Bernoulli Parameter_ p

^
^

The MLE of p is p. Because of sampling error, p is only an estimate,

^

and the key question is how close is p to p. Confidence intervals are

described below. Note that these confidence intervals refer to

sampling error of the Monte Carlo process, not uncertainties associated

with the parameters of X..
i

^

Consider p,
K

I !!yi
(2.8)

^

The mean and variance of p are [ 5]

E(p) = p (2.9)

^

V(D) = p(! - D) (2.10)
• K

^

By the central limit theorem, p will approach a normal distribution as

K -_ =. Confidence intervals for p are constructed using normal distribution

mathematics,
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(i)

(2)

(3)

(4)

Define:

(a) g(_)

(b) Distribution, and

(_ o) for all X.

+
Obtain random sample

X = (X 1 X 2 X )_i ' ' n

t Compute g(X i)

+
Repeat (2) and (3) _o obtain

sample of g(_i); i = 1, K

POINT PROBABILITY

ESTIMATE

Count fraction

<

of g(X i) - 0

CONSTRUCT CDF

W---

Sort g(x) to define

empirical CDF

I Plo_ CDF

Fig. 2.1 Flow diagram of conventional Monte Carlo
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MONTECARLO SOLUTION

LIMIT STATE FUNCTION : R=S

SAMPLE SIZE, K= 100

NUMBEROF RANDOMVARIABLES, N= 2

RANDOMVARIABLES

VARIABLE DISTRIBUTION MEAN STD DEV

R WEIBULL .20000E+Q2 .2000_E+01

S EVD .10000E+02 .20000E÷_I

STATISTICS OF Y : ._

MEAN = .10018E+02

STD DEV = .27499E+01

MEDIAN = .9660bE+@I

COV = .2745_E÷@_

NUMBEROF NEG Y VALUES= 0.

Note that Y is the same as g(X);

these are the statistics on the

limit state function.

^

[--This is p

PERCENT OF TRIALS= .0@00@@

Fig. 2.2 Output of conventional Monte Carlo program. (No sorting requested)

Performance function; g(R,S) = R- S
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i / ^ _ J

^

P _ za/2 _- p(l - p) < < p(l - p)K - p - p + za/2 K (2.11)

^

where p is substituted for p in the variance. The probability that p will

be bounded by the lower and uppper limit is l-a_ where a is the confidence

is the standard normal variate corresponding to a/2.
coefficient, z /2

Commonly used values

a Z l2

.i0 1.64

•05 1.96

.01 2.58

The confidence interval of Eq.2.11 relies on the central limit theorem

and must be considered as only an approximation for finite K. In general,

the approximation is considered "valid" if Kp > 5 [ 5].

Eq. 2.11 can be written as,

^ < <

p (1 - Y) - p - p(l + ¥) (2.12)

where,

z i2/p<l - (2.13)
Y= ^ _ K

P

Eq. 2.13 is displayed in Figs. 2.3 and 2.4 for 90% and 95% confidence

intervals respectively. These figures show the sample size requirements

for confidence intervals of a given width and level. For example, if the

-3
point probability is expected to be about i0 , and it is required to have

r

p within +- 10% of p with a confidence of 90%, then it is necessarv_ to have

a sample of size K > 200,000.
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0

1.0

-i
i0

-3
10

^ -2
p = I0

p = ]0-4

p = 10-3

c_ = 90%

I i I , I i [ , I , I , I i I i I , l

103 104 I05 106 107 108 109 i0 I0 lO ll 1012

SAMPLE SIZE, K

Fig. 2.3 90% confidence intervals on p as a function of sample size and
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O_

F-J

1.0

-i
i0

-2
i0

-3
i0

//_ I"

_= __ (] - 6).
k

m

= 95%

J I

I0 tO4 10 5 ]0 6 i0 7 ]0 8 10 9 I010 1011 1012

SAMPI.E SIZE, K

Fig. 2,4 95% confidence intervals on p as a function of sample size and p.



2.3 Computer CPU Time on the CYBER 175

The conventional Monte Carlo program of Appendix B was exercised on

several problems using all five of the available distributions. CPU time

was recorded for each program. It is assumed that this conventional Monte

Carlo program will provide an upper bound to CPU time relative to other,

and more efficient, Monte Carlo schemes. The CYBER 175 is the mainframe

computer at the University of Arizona, and all results relate to this machine.

Recorded CPU time for several examples was consistent. Compilation and

loading time for all cases are shown in Table 2.1. These are average values,

but there was little variation.

Execution CPU time essentially depends only upon the number of variables

and not on distributional forms or performance functions. Fig. 2.5 illustrate

the CPU execution time per variate as a function of sample size K. Total CPU

time is obtained by adding compilation and loading time to execution time.

A sample program was run on both the CYBER 175 and the VAX 11/780 for

a time comparison. The results shown in Table 2.2, reaffirm the fact that

the VAX is too slow for production Monte Carlo.

To get an idea of computer charges for running Monte Carlo, Fig. 2.6

is provided. This is the commercial rate of the UA CYBER 175 for low priority

jobs.
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Table 2. i

Compilation and Loading CPUTime for Conventional

Monte Carlo Program on CYBER175

Compile

CPUTime (sec)

1.0

Load 1 0.25

Table 2.2

Comparison of CPUtime Between CYBER175 and V_( 11/780
,

for one Example Problem

Time (sec)

CYBER175 I VAX 11/780

Compile

Link

Execution

TOTAL

1.0 I 14

0.25 I 5

7.5 I 30

8.75 I 49.0

There were 2 variables; K = 30,000.
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i0.0

1.0

0.i

m

m

m

Fig. 2.5

/

CPU EXECUTION TIME PER

VARIABLE, T

(SEC)

10-4T(SEC) = (1.4 x )K

/

/

/

/
/

_ J i

102 103

! l l _-

104 105

S_MPLE SIZE, K

CPU execution time per variate on CYBER 175 as a

function of sample size K.
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2.4 Comparison of Monte Carlo to Wu/FPI

Computational efficiency was the motivation for the development of the

Wu/FPI program. It is generally known that Monte Carlo is inefficient

relative to a fast ,probability integration method. Because the cost of

conventional Monte Carlo depends upon the accuracy and probability level

required, a general direct comparison can't be made. However, an example

presented in the following clearly demonstrates the high cost of Monte

Carlo.

Suppose that it is required to provide a Monte Carlo solution such

A

that the 95% CI for p is within ± 10% of p. The CPU execution time for the

CYBER 175 can be computed from Figs. 2.3 and 2.5 for a given probability

level, p. This CPU time is shown in Fig. 2.7 as a function of the number of

variables in g(_) for B = 2 and 3 (p = $(-_)). At these levels Monte Carlo if

two to three orders of magnitude more expensive than FPI. And the FPI

solution is likely to be more accurate. Moreover, for smaller tail proba-

bilities FPI gets no more expensive while Monte Carlo will break the bank.

2.5 Estimatin Z the CDF of a Random Function

2.5.1 The Empirical CDF

Conventional Monte Carlo provides capability for estimating the complete

distribution function of a function of random variables. Define the random

variable Z, as a function of the random vector X.

z =
(2.14)
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Fig. 2.7 A Comparison of CPU Execution Time on the CYBER 175 Between

Conventional Monte Carlo and Fast Probability Integration

lOGO

IO0

10

l.O

O.1

m
Conventional Monte Carlo

+
(95% Confidence Intervals Within - 10,%)

WulFPI

FOR_ BY

RACKWITZ-FI ESSLER

I 1 14 f , , ,, t I
2 5 I0 20

NUMBER OF VARIABLES
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A random sample of X." i = i, K is used to generate a random sample of
l'

Z.; i = i, K. In turn, an empirical distribution function of Z can be
1

constructed using methods of probability plotting. The empirical CDF,

denoted as 7., will be an estimate of the CDF of Z, Fz(Z).
l

Various forms of F. have been proposed [ 3, 4, 6 ]. The values of
t 1

7. below correspond to Z(i ) where Z(i ) is the ith smallest value of the
l

random vector Z. Thus, 7 E F (Z )).i i (i

i - 1/2
i. Hazen; F. =

l K

i

2. Gumbe!; F i = k + 1

i- 0.3

3. Median ranks, F. =l n +0.4

Through prior experience on extensive Monte Carlo simulation, this author

has found that the Hazen formula consistently provides "good estimates"

of F Z •

2.5.2 The Sort Routine

To construct the empirical CDF it is required to sort the random

Let Z denote the ith smallest
sample Z to obtain an ordered sample Z •_o (i)

value.

The routine used in this Monte Carlo code is program QUICKSORT which

is considered to be the fastest available [ 7 ]. A description of QUICKSORT i_

given in Appendix C. The Fortran statements for this code are provided

in the program listing in Appendix B .

CPU time requirements for the sort routine can be relatively large for

large samples. Fig. 2.8 sho_ CPU execution times as a function of the

size of the Z vector.

268



i000

i00

1.0

0.I

CPU SORT TIME, SEC.

i0-

°

103 104 , 105

SAMPLE SIZE, K

Fig. 2. 8 CPU sort time (execution)as a function of sample

size for the CYBER 175.
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2.5.3 An Example.

Shown in Fig. 2.9 is a table of the sorted vector Z(i ) and the corres-

ponding F. for the example of ?ig. 2.1. This is the data required for
l

plotting. The empSrical CDF of Fig. 2.10 was done by hand, but in general

such graphs can be automated using a computer graphics package.
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1
6

II
16
21
26
31
36
41
46
51
56
61
66
71
76
81
86
91
9&

SORTED VALUES OF Z AND

.32159E+01
.48457E+01
.59944E+01
.69827E+01
.76156E+_I
.87304E+01
.9_619E+01
.92816E+01
.95862E÷_I
.10054E+02
.10376E+02
.10712E+02
.10856E+02
.II191E+02
.I1730E+_2
.12122E+02
.12667E+02
.12893E+_2
.13273E+02
.13943Em02

.40876E+01

.48984E+01
.60426E+01
.70597E+01
.79653E+OI
o87709E+01
.90971E+01
.92823E+01
.95993E+01
.10115E+02
.I_581E+_2
.10771E+02
.I_874E+02
.I1246E+02
.II760E+_2
.12140E+02
.12803E+_2
. 12963E+02
.13297E+_2
.14797E+02

THE EMPIRICAL CDF

.42831E÷_I

.50586E+01

.66202E+01

.70685Em01

.83861E÷01
.87964E+01
.91454E+01
.93259E+01
.9638_E+01
.10137E+_2
.I_607E+02
.10773E+02
.10958Em02
.I1344E+_2
.I1802E+02
.12284E+02
.12844E+02
. 13_42E+_2
.13361E+02
.14983E+02

.44764Em01
.56150E+_I
.6850_E+01
.70780E+01
.84534E÷01
.88850E+_I
°92372E+01
.95770E+01
.98157Em01
.10256E+02
.10631E+_2
.10791E+02
.II125E+02
.I1409E+02
. I1912E+02
.12413E÷02
. 12867E+_2
.13131E+02
.13638E÷_2
.15123E+02

.45626E+0i

.59102E+01
.69210E+01
.710_4E+01
.8472_E+_I
.89137E+01
.92557E+01
.95829E+01
.98782E+01
.I_370E+02
.I_644E+02
.1_846E+_2
.II162E+02
.I1616E÷02
. I1933E+02
.12573E+_2
. 12873E+02
. 13142E+02
. 13709E-02
. 15305E+_2

2.9

1
6

II
16
21
26
31
36
41
46
51
56
61
66
71
76
81
86
91
96

.5_000E-02
.55000E-01
.10500E+0_
.15500E÷00
.2_50_E÷00
.25500E+00
.30500E+00
.35500E+00
.40500E+00
.45500E+00
.5050_E+_0
.55500E+_0
.6_500E+00
.65500E+0_
.705_0E+00
.75500E+00
.80500E+00
.85500E+00
.90500E+_0
.95500E+00

.150_0E-_I

.&5000E-OI

.I1500E+_0

. 16500E÷00
.215_0E+_0
.26500E+00
.31500E+_0
.365_0E÷_0
.41500E+_0
.4650_E+00
.51500E+0_
.5650_E+_0
.61500E+0_
.665_0E+_0
.7150_E+_0
.76500E+00
.8150_E+00
.865_0E+00
.91500E+00

.96500E+00

.25_E-_I

.750_E-_I

. 125_0E÷0_

. 1750_E÷00

.22500E+00

.27500E+00

.325_0E+0_

.3750_E+00

.425_0E+0_

.47500E+0_

.525_0E+_

.5750_E÷00

.62500E+00

.675_E+00

.72500E+_@

.77500E+00

.82500E+_0

.87500E+00

.925_0E+00

.97500E+_

Sorted Z. and corresponding empirical CDF for the
2

.35_00E-_I

.85000E-01

.13500E+_

.18500E+00

.235_0E+00

.28500E+00

.33500E÷_0

.38500E+_0

.435_0E+00

.485_0E+00

.53500E+00

.585_E+_

.63500E+0_

.685_0E+_0

.73500E+_0

.78500E+0_

.83500E+00

.'885_0E+_0

.9350_E+0_

.985_0E+00

.4500_E-@i

.95_0E-01

. 1450_E+_

.19500E÷0@

.24500E÷00

.29500E+00

.3450_E+00

.39500E+00

.445_0E+_

.49500E+_0

.54500E+0@

.595_0E+0_

.64500E+0_

.695_0E+0_

.74500E_0

.79500E_00

.845_0E+0_

.8950_E+_

.94500E+0_

.99500E+_

example of Fig. 2.1
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I

Empirical CDF of g(R,S) of Fig. 2.1.

The points are given in Fig. 2.7; K= i00

O

o

O

Performance Function, _(R,S)
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3.0 THE VARIANCE REDUCTION METHOD
J

3.1 Preliminary Remarks

The variance of Monte Carlo estimators can be reduced, relative to

straightforward sampling of Chapt. 2.0., by appropriate operations with

negatively correlated samples. Ang and Tang [ i] present several examples

which demonstrate dramatic improvements in efficiency realized by variance

reduction methods.

A variance reduction computer program, tailored for structural

mechanics analysis by providing point probability estimates of functions of

random variables has been developed. The listing is given in Appendix D.

To assess performance, the program has been exercised on several examples.

Results presented in Section 3.6 show dramatic improvement of variance

reduction over conventional Monte Carlo in some cases. In other cases,

the improvement is only modest. Some general conclusions are _resenced

in Section 3.7. For the most part however, for a given problem it is dif-

ficult to predict how much improvement one can expect with variance reduc-

tion.

3.2 The Essence of Variance Reduction

The goal of analysis is to estimate

p = P[h(_) < h ] (3.1)
O

Suppose p and P' are two unbiased estimates of p. (1_ne method for obtaining

v

a point estimate of p is described in Sec. 3.4 below.) The two estimators

may be combined to form another estimator

1
= _(P + P'i (3.2)

273



_ J

The expected value of p is,

E(p) = }[E(p) + E(p')] = p (3.3)

which means that p is an unbiased estimator.

_e corresponding variance is

¼[V(p) + V(p') + 2 Cov (p, p')]V(p) (3.4)

If p and p' are statistically independent, for example, based on two separate

and independent sets of random numbers,

V(p) = _l IV(p) + V(p')] (3.6)

Thus, the accuracy of the estimator p can be improved over that of the

^

independent case if p and p' are negatively correlated. Ang and Tang cine

several examples (no structural analysis) where variance reduction can

provide a d r_-matic improvement in efficiency of probability estimation [ i ].

An estimate of p is obtained by several samples, Pi; i = !,K.

K

PE = K i
(3.7)

all Pi are independent. Note that PE will approach normality as K _ =

as a consequence of the central limit theorem.

The mean and variance of PE are,

E(PE ) = p (3.8)

V(PE ) = o2/K (3.9)
P

2
where o

P
is estimated as,

K

2 1 (3 .i0)S - ! (Pi - PE )2
p K-I i= I

274



3.3 How to Obtain Nesativelv Correlated Sammles
J

Suppose that the uniformly distributed variate u. is used to generate
1

a number x. from a given distribution (See Appendix A). Then the uniform
1

variate u! = 1 - u. will _roduce an x! such that x. and x_ will be nega_ive!v
1 1 • l l 1 "

correlated. The u! are called "antithetic" variates.
1

And in general, if Ul, u2, u is used to generate p and 1 - u 1

1 - u_, 1 - u is used to generate ', then p and D' will be ne_a-
-- n •

tively correlated•

Such a procedure works well when the integral transform is used, e.g.,

Weibull, EVD. One uniform variate u. is used to generate one x.. But
1 l

where Box-Muller is .used to generate normal variates, two u. are chosen
1

(See Appendix A). _ile the resulting x. and x_ will be negatively corre!aced,
l 1

the correlation coefficient will not be -!.0. An improvement can be made

by choosing x[ as a "mirror image" of x. in the distributions. This can
l 1

be done by

x'. = -._,- x. (3.11)
1 i

where U is the mean of X.

3.4 How to Obtain Point Probability Estimates

3.4.1 The Two Variable Case

The structural reliability problem in which p is the probability of

failure will be used to illustrate how p and p' are obtained. Consider

the design case where the two variables are R (strength) and S (stress).

Estimate p, where

p = P[R- S _ 0] (3.12)
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Both R and S are random variables whose density functions are sho_

in Fig. 3.1. First S, having been identified as the variable having the

largest variance, is the "reference." A random variate R. is sampled from
l

the other factor, R. An estimate of p is

^

Pi = P(S > R.)I

= ! - Fs(R')z (3.13)

where FS is the CDF of S.

It should now be apparent why sampling is done on the smallest vari-

ance term. p is a "good" estimate of p if the distribution is narrow, and

is exact as oR _ O.

Now the antithetic variate RI is sampled as described above. Because

it is negatively correlated to R , its position relative to R. will be as

sho_ in Fig. 3.2. Then,

" = P(s > P,'.)
Pi _-

= l - FS(RI)_. (3.lL)

and the ith estimate of p is

- 1 )Pi : Y (Pi +
(3 .zs)

As a second example, consider again the case where R and S are the basic

variables, but now where o R < oS. In this case, R would be the reference

variable Random points S and the antithetic variate S[ are sampled from
• i l

S. The estimates now are,

Pi : FR(Si) (3.16)

Pî' = FR(Si)
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The "Reference" Variable.

PDFof S, fs (maximum
variance variable)

l\

Pi P(S > R )1

Fig. 3 .i Estimate of p using one point sampled from the minimum
/

variance variable.
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Thus, it is seen that the variable type (stress or strength) must be identi-

J

fied to obtain the proper form for computing estimates.

Fig. 3.2 shows why negatively correlated variables tend to provide

good estimates. Being on both sides of a distribution, R. and RI combine to
i l

produce an "average" estimate of p.

3.4.2 The General Case

In general the performance function g(_) = h(X) - h is a non-linear
' ' _ O

function of several variables. The method of obtaining a point estimate of

p is an extension of the scheme for two variables.

The reference variable is defined, not as the one having the maximum

variance, but rather the one having the maximum impact. For example, if

g = 5R - S (3.17)

OS/2 R 1and o R , clearly the random variable, = 5R will have a larze_ varl-

ance than S. Thus, we say that R is the maximmm immact variable.

In general, the maximtn= impact variable can be found by estimatinz

3g/BX. for each X.. The maximum impact variable, denoted as XM, is that1 i

X. for which I_g/$Xil is the largest.!

The sign of _g/_X i identifies variable type; stress if (+) and strength

if (-). As indicated above, the "type" of _i must be knowm to choose the

appropriate form for estimating p (e.g., Eqs. 3.13 and 3.16).

The estimates p and p' proceed as follows. Sample all variables but

X M. Let g(_) = 0, and solve for x M (this is done by the secant method
i

in the program).

x M = h(_o) (3.18)

where _o is the vector of sampled _ minus X M.
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The estimate of p is, J

= IFxM(XM) if _ is a strength variable (3.19)

I - FXM(X M) if XM is a stress variable

i

To obtain p', the antithetic vector _ of x%O
is used in Eq. 3.19.

3.5 Confidence Intervals on D

Noting that PE is normally distributed, approximate i -_ confidence inte_

vals on p can be constructed as [ 5 ],

z / 2 Sp z /2 Sp
<P< PE +

PE r K /K

(3.20)

or,

PE(l-y) < p < PE(I + y)
(3.21)

where,
= standard normal variate (absolute value) ac

z /2

probability level z/2.

z/2 C p

¢rK

(3.22)

= Sp/pCp E
(3.23)

The UA variance reduction program chooses K to produce a specific

confidence interval. For example, if you want to sample until the 95%

+
confidence intervals are - 10% of PE'

-( = 0.i0 z,/2 = 1.64
(3.24)
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and solving Eq. 3.22 for K,
2

K > z /2 Cp = 269 C2 (3.25)

¥ P

To find Cp, an initial sample of K = i000 is chosen and an estimate

of Cp is obtained. Then if K < !000 in Eq. 3.25, the process is terminated

with narrower confidence intervals than requested. If K > i000, the program

will continue to sample to that value.

3.6 The Variance Reduction Monte Carlo Prosram

A flow diagram which outlines the logic of the variance reduction

program is provided in Fig. 3.3. Sample output of the program is sho_

in Fig. 3.4 with some commentary.

_o versions of the program have been deve!oDed. An interactive version

(IVARED) runs on the IBM PC/XT. Program VA_ED runs on the V_X or CYBER 175.

A listing of VARED is given in Appendix D.

3.7 Examples of the Performance of VARED

Twelve examples of the use of V_RED to produce point probability estimate

are provided in Tables 3.1 through 3.12. Point estimates by VARED are compared

to the exact solution (closed form or POFAIL) if available. The exact

solution, provided by program POFAIL, is employed for performance functions

involving two variables. For larger problems, Wu/FPI is used. For the

VARED solutions, 95% confidence intervals (_ = 5%) are specified along

with y = 0.i0.

To compare variance reduction with conventional Monte Carlo, sample

size requirements and CPU time for the latter are extracted from Figs. 2.4 and

2.5 and are presented in the tables.
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(!)

(2)

(3)

(4)

(5)

(6)

(7)

(s)

(9)

Define I

(a) g(_)

(b) Distribution, and (_, a) for all X.
i

(c) i - _; confidence level

(d) y; width of confidence bound

(e) K, the initial sample size

I

?

I IIdentify maximum impact variable,

t
Sample a random vector _i

(ail variables except _)

T
Compute Pi I

T
xIObtain the antichecic vector "_i

T

ICompute Pi

I
Repeat steps (3) through (7); i = I,K j

I

Y
Compute PE and i-= confidence bounds.

Are confidence bounds with PE(l _ y)?

_._S

I

Print Results

(!o)

(!i)

NO

I

-T
Compute K , the additional samples

O

K required co bring ! - a confidence

bounds within _(1 - y)

Repeat steps (2) through (7) for i = I, K ° I

i

i

T

Synthesize data collected in (8) and(12) (ii) and print resulgs

Fig. 3.3 An outline of the variance reduction Monte Carlo program
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Fig. 3.4 An example of the output of the variance reduction Monte Carlo

Program with commentary

MONTE CARLO SOLUTION

LIMIT STATE FUNCTION : G=R-DSQRT(300.*P**2+I.92*T**2)

SAMPLE SIZE = 1000

NUMBER OF RANDOM VARIABLES =

This value is arbitrary;

it is the size of the

first sample used to

estimate the total

required sample size, K

CONFIDENCE INTERVAL =

GAMMA = .I@

95.00 % Ensures that 95% confidence intervals

on p will be within _ 10% of the

estimator, PE

MAX. IMPACT VARIABLE = X( I)

VARIABLE TYPE IS STRENGTH

RANDOM VARIABLES

VARIABLE DISTRIBUTION MEAN STD DEV

R WEIBULL .4800@E+@2 .3@00@E+@I

P LOG .9870@E+_0 .1600_E+_

T EVD .200_0E+02 .20_0E+_I

ESTIMATE OF P =
-r -'3• 1604 JE-_- This is the first estimate of p

95.00 % CONFIDENCE INTERVALS ARE

PL = .I1725E-02 PU = .20360E-02 ,Note that 95% confidence

intervals exceed ' 10%.

Thus, a larger K is

required. (See below)

STATISTICS OF P :

MEAN = . 16043E-02 283
ORIGINAL PA_E {$

OF POOR QUALITY



STD DEV = .69662E-02

MEDIAN = .36004E-03

COV = .43422E+01

K FOR GAMMA = .10 IS
I

7244

Based on the first sample of K = i(

this is the total K required for th

desired confidence intervals. K is

computed from Eq. 3.25 which requiz

C This is why the first sample c
p"

i000 is taken.

ESTIMATE OF P = • 18030E-_2

95.90 % CONFIDENCE INTERVALS ARE

PL = . 15509E-02 PU =
•2_550E-02

Note that the confidence intervals do not qui

meet the specifications. This is because the

original estimate of C = 4.34 was small rela
P

to the improved estimate of C = 6.24
P

STATISTICS OF P :

MEAN = . 18348E-02

STD DEV = .I1456E-01

MEDIAN = .29017E-03

COV = .62436E+_I

] YOU HAVE ANOTHER DATA SET ?(Y/N)

Note : The size of the sample required K depends upon C (Eq. 3.25).• p

In this problem C is relatively large implying that a relatively
P

large K is required. This same problem is presented in Table 3.7.
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Table 3.1 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 1

D_MONSTRATING THE pERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXA;_IPhE i

PERFORMANCE FUNCTION: g = R- S

Variable

R

S

Type Mean/Median Std. Dev./ COV

50L

2O

• 5

12

RESULTS :

Probability

o f Failure

(a)
Exact

Wu/FPI

Monte Carlo

Variance

Reduction(d)

Monte Carlo

Conventional

(Bernoulli

p_r_meter_(e)

1.051E-2

l. 118E-2

I TotalCp0: Time (b)

2.04

11.2

Sample
Size, K (c)

160

5E4

_otes:

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pi for variance reduction and the number of Z i for

convennional. The values are not directly comparable.

(d)

(e)

-L

95% confidence intervals within -' 10% of PE

Same confidence interval as variance reduction.
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Table 3.2 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE2

DEMONSTRATINGTHE PERFORMANCEOFTHEUAVARIANCEREDUCTIONMONTECARLOPROGRA

EXAMPLE 2

pERFORMANCEFUNCTION:g = R- S

Variable Type Mean/Median : Std. Dev./ COV

R LN 50 * 0.2 *

S LN 20 * 0.2 *

I

RESULTS:

(a)
Exact

Wu/FPI

Probability

of Failure

5.347E-4

Monte Carlo

Variance 5.072E-4

Reduction(d)

p=r_meter_ (e)

_onte Carlo

Conventional

(Bernoulli

Total

CPU_Time (b)

13.78

238.9

Sample
Size, K (c)

11589

i .122E6

Notes:

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the _xact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pi for variance reduction and the number of Z. forI

conventional. The values are not directly comparable.

(d) 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3.3 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE3

DEMONSTRATINGTHEPERFORMANCEOFTHEUA VARIANCEREDUCTIONMONTECARLOPROGRAM

EXA._PLE 3

PERFOP_MANCEFUNCTION: g = R- S

Variable Type Mean/Median Std. Dev./ COV

R WEI 4.5 0.45

S FRE 3.0 0.30

RESULTS:

Probability
of Failure

Exact (a)
Wu/FPI

Monte Carlo
Variance
Reduction (d)
Monte Carlo
conventional
(Bernoulli
p_rameter)(e)

1.0933E-2

1.0914E-2

Total
Cp0_-Time(b)

4.066

9.634

Sample
Size, K(c)

2535

35481

_otes :

(a) Exact value using POFAIL if two variables.
If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pi for variance reduction and the number of Z.l for

conventional. The values are not directly comparable.

(d) 95% confidence intervals within _ 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3.4 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE4

DEMONSTRATINGTHEPERFORMANCEOFTHEUA VARIANCEREDUCTIONMONTECARLOPROGR7

EY_A_MPI_E 4

PERFORMANCEFUNCTION: g = R- S2

Variable

R

Type Mean/Median Std. Dev./ COV

, _I 20 4.0

S FRE 3 0.6

RESULTS:

Exact (a)
Wu/FPI

Monte Carlo
Variance
Reduction(d)
Monte Carlo
Conventional
(Bernoulli
p_r_meter)(e)

Probability
of Failure

4.272E-2

4.0511E-2

Total
CP0:rime(b)

3.568

3.689

Sample
Size, K(c)

1864

9441

Notes:
(a) Exact value using POFAILif two variables. If more than two,

Wu/FPI is used; the _xact should be within 5%of this value.

(b)

(c)

(d)

(e)

CYBER 175

I

The number of Pi for variance reduction and the number of Z.l for

conventional. The values are not directly comparable.

95% confidence inte.--vals within _ 10% of PE

Same confidence interval as variance reduction.
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Table 3.5 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE5

D_MONSTRATINGTEEPERFORMANCEOFTHEUAVARIANCEREDUCTIONMONTECARLOPROGRAM

EXA__IPLE 5

pE._FORMANCEFUNCTION:

Variable

R

Type

g= R- S

Mean/Median Std. Dev./ COV

WEI 20 2.0

S EVD i0 2.0

i

RESULTS :

Exact (a)

Wu/FPI

Monte Carlo

Variance

Reduction(d)

Monte Carlo

Conventional

(Bernoulli

par_m=_(e)

Probability

of Failure

2.8573E-3

2.6179E-3

Total Sample

CPU__Time(b) Size, K (c)

i0. 881 1 11362

36.157 152230

Motes:

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

i

(b) CYBER 175

_ . for
(c) The number of Pi for variance reduction and the number of Zl

conventional. The values are not directly comparable.

(d) 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3.6 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 6

DEMONSTRATING THE PERFORMANCE OF I'HE UA VARIANCE REDUCTION MONTE CARLO PROGR_

EXA.MPEE 6

PERFORMANCE FUNCTION:

Variable

A LN

A

B LN

Type

g

AA

BmO

AA

TS + _3
B 0. 2779

Mean/Median *

- 6.3E8

_td. Dev./ COV

1.0*

WEI 4.3Eg 0.5"

0.9* 0.25*

RESULTS :

Exact (a)

Wu/FP I

Monte Carlo

Variance

Reduction (d)

Probability

of Failure

1.901E-3

I. 7958E-3

Monte Carlo

Convent ional

(Bernoulli

parameter) (e)

Total

CPU:Time (b)

3.643

Sample

Size, K (c)

1437

68. 3616 199526

Notes:

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pi for variance reduction and the number of Z.l for

conventional. The values are not directly comparable.

(d') 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3.7 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE7

DEMONSTRATINGTHE PERFOP_MANCEOFTHEUA VARIANCEREDUCTIONMONTECARLOPROGRAM

EXA._PLE 7

PERFOR_MANCEFUNCTION:

Variable

R

Type

g = R - /300 p2 + 1.92 T 2_

Mean/Median Std. Dev./ COV

WEI 48.0 3.0

p LN 0.987* 0.16"

T EVD- 20.0 2.0

RESULTS :

(a)
Exact

Wu/FPI

Monte Carlo

Variance

Reduction (d)

Monte Carlo

Conventional

(Bernoulli

parameter)(e)

Probability

of Failure

0.0018

0.0018208

Total

CP0_Time(b)

16.375

74.4186

Sample
Size, K (c)

12734

211349

Notes:

(a) Exact value using POFA!L if two variables. If more than two,

Wu/FPI is used; the exact should be _ithin 5% of this value.

(b) CYBER 175 •

(c) The number of Pi for variance reduction and the number of Z. for1

conventional. The values are not directly comparable.

(d)

(e)

95% confidence intervals within ± 10% of PE

Same confidence interval as variance reduction.
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Table 3.8 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAHPLE8

DEMONSTRATINGTHEPERFOP_MANCEOFTHE UAVARIANCEREDUCTIONMONTECARLOPROGR_

EXA_IP_E 8

pERFORMANCEFUNCTION:

Variable Type

f i - f
PP pp

g = A - i000 +
G(Y _§o)-i "71 H(Y &Co)-I'188

Mean/Median* :I Std. Dev./ COV*

A ' LN 1.0 0.3

f N 0.7 0.07
PP

G LN 0. 222 _ O. 4*

T LN 1.0 0.15

A_ o EVD

LNH

0.0005

1.673

0.00008

0.4

RESULTS :

(a)
Exact

Wu/FPI

Monte Carlo

Variance

Reduction (d)

Monte Carlo

conventional

(Bernoulli
_m_r_r_(e)
h

Probability

of Failure

i. 002E-2

9.8814E-3

Total Sample

CPUkTime (b) Size, K (c)

14.822 4401

30. 7564 39810

_otes:

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used_ the exact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pi for variance reduction and the number of Z. fori

conventional. The values are not directly comparable.

(d) 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3._ Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 9a

DEMONSTRATING THE PERFOP_M.a_NCE OF THE UA VARI._NCE REDUCTION MONTE CARLO PROGRAM

EXA_LPLE 9a

PERFORMANCE FUNCTION: g = R - S

Variable Type Mean/Median

R LN 20.0 0.2

S LN 10.0 0.2

Std. Dev./ COV

RESULTS :

(a)
Exact

Wu/FPI

Monte Carlo

Variance

Reduction (d)

Monte Carlo

Conventional

(Bernoulli

p._=m_t_(e)

Probability

of Failure

6.6642E-3

6.4!59E-3

Total

CP0_Time (b)

Sample

Size, K (c)

4.75

15.7724

2831

59566

Notes:

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b)

(c)

(d)

(e)

CYBER 175 i

The number of Pi for variance reduction and the number of Z. forl

conventional. The values are not directly comparable.

95% confidence intervals within ± 10% of PE

Same confidence interval as variance reduction.
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Table 3.10 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 9b

DEMONSTRATING THE PERFOrmaNCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRA_

EXAY[PLE 9b

PERFORMANCE FUNCTION:

Variable Type

g = R- S

Mean/Median Std. Dev./ COV

R ' LN 22.5

I

S LN i0.0

0.2

0.2

RESULTS :

Exact (a)

Wu/FPI

Probability

of Failure

1.89338E-3

Total

CPU:Time (b)

Monte Carlo

Variance

Reduction (d)

Monte Carlo

Conventional

(Bernoulli

parameter) (e)

i. 7434E-3

8.075

51.44

Sample

Size, K (c)

6068

218776

Notes :

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the _xact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pi

conventional. The values are not directly comparable.

(d) 95% confidence intervals within _ 10% of PE

(e) Same confidence interval as variance reduction.

for variance reduction and the number of Z. forl
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Table 3.11 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE9c

DEMONSTRATINGTKEPERFORMANCEOFTHEUAVARIANCEREDUCTIONMONTECARLOPROGRAM

EXA._P_E 9c

PERFORM-_NCEFUNCTION:

Variable I Type

R I LN

s I

g= R- S

Mean/Median Std. Dev./ COV

25.0

i0.0

0.2

0.2

RESULTS:

Probability

of Failure

Exact (a)

Wu/FPI

Monte Carlo

Variance

Reduction (d)

Monte Carlo

Conventional

(Bernoulli

parameter)(e)

5.347E-4

5.072E-4

Total

CPU:rime(b)

13.681

164.70

Sample

Size, K (c)

11589

767361

Notes:

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pi for variance reduction and the number of Z.l for

conventional. The values are notdirectly comparable.

(d) 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3.12 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE9d

DEMONSTRATING_ pEP_FO_M_INCEOFTHEUAVARIANCEREDUCTIONMONTECARLOPROGRA

EXAMPLE 9d

PERFORMANCEFUNCTION: g = R - S

Variable Type Mean/Median
,

R ' LN 27.0

i0.0

Std. Dev./ COV

0.2

0.2
S LN

RESULTS :

Exact (a)

Wu/FPI

Monte Carlo

Variance

Reduction(d)

Monte Carlo

Conventional

(Bernoulli

Probability

of Failure

1.952665E-4

2.0296E-4

Total

CP0_Time (b)

20.27

388.93

Sample
Size, K (c)

17977

1840772

_otes :

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pi for variance reduction and the number of Z. forl

conventional. The values are not directly comparable.

(d) 95% confidence intervals within T 10% of PE

(e) Same confidence interval as variance reduction.
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3.8 Comparison of Computer Costs of Variance Reduction and Conventional

Monte Carlo

Example 9a, b, c, and d was designed to illustrate how computer costs

increase as point probabilities become smaller, providing estimates at the

same level of confidence. Figs. 3.5 and 3.6 show the relationship between

CYBER 175 CPU execution time and the probability level for the conventional

"Bernoulli" and the variance reduction estimates, respectively, for Example 9.

Then Fig. 3.7 demonstrates how much more efficient is variance reduction

for this problem. It should be noted that Figs. 3.5 through 3.7 relate

only to Example 9 and cannot be presented as being characteristic of the

relative behavior of the two methods.

3.9 Conclusions on Variance Reduction

Some general conclusions based on experiences exercising VARED are,

i. Variance reduction seems to outperform conventional Monte Carlo

consistently. However, in some cases the improvement is dramatic, in some

cases it is modest.

2. Related to item i, it is difficult to predict computer costs.

At a given confidence level, CPU time depends strongly upon the form of

the performance function, the distribution of the variables, as well as

the probability level.

3. To construct a CDF, it is necessary to obtain several point proba-

bility estimates, as it is using FPI. Thus, the variance reduction Monte

Carlo method is not particularly effective when it is required to construct

t

a distribution function of a response variable.
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Fig. 3.5 CPU execution time for CYBER 175 for conventional Bernoulli

point probability estimate; Example 9; _ = 5%, y = 10%
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CPU execution time for CYBER 175 for variance reduction

point probability estimate; Example 9; _ = 5%, y = 10%
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Fig. 3.7 Ratio of Bernoulli to variance reduction CPU execution time

for CYBER 175 for point probability estimate; Example 9;

95% C.I.Y = 10%
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4.0 DIRECTEVALUATIONOF THEPROBABILITYOF FAILUREINTEGP_L

4.1 Preliminary Remarks

Consider the multidimensional integral for pf.

pf = ff×(_)dx

fi

(4.i)

where X is a vector of n random variables and _ is region of failure in X-space.
%

Standard methods of numerical integration (e.g., Simpson's rule) are

efficient for a one and two dimensional integral. But when n exceeds two, these

methods are much more difficult to apply. Monte Carlo integration becomes

more attractive for n > 2.

4.2 The Mean Value Hethod Used for a Single .Random Variable

Consider the random variable X. Let

pf = P[X_ a] (4.2)

a

pf - I =f f(x)dx

0

The density function f(x) is shown in Fig. 4.1. But upon dividing the interval

(0, a) into J equal increments, kx., the integral can be approximated as
l

J

I = Z Ax. f(x.)
i I

i=l

(4.3)

This summation can be approximated by a Monte Carl'0 approach. Define

a sampling interval (c, d). In the example of Fig. 4.1, (c, d) could be

chosen as (0, a). But in general, c should be chosen so that the area below

>

is "very small." And d should be chosen such that d - a.
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Density functions of X and U

I
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f (x)
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Fig. 4.2 Density function for Example

J
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Consider a random sample of u. of uniform variates
1

u. _ U(c, d) i = !, N
i

(4.4)

The density function of u is shown in Fig. 4.1.

Let

L = d - c (4.5)

Note that

_ L

l N
(4.6)

And it follows that,

N

I = I L 6 f(x.) (4.7)
N i l

i=l

where

6. = r0 if u. > a (4.8)

<

if u. - a
l

Example: Compute P[X [ 0.70] where X m N (i.0, 0.i0) by Monte Carlo using

the mean value scheme. The interval (c, d) is defined as shown in Fig. 4.2.

o is the standard deviation. Here K = 4.5. The reason for not choosing d = a

here (which would be more reasonable) is that the scheme of selecting an inter-

val for the integration boundary must be applied in the multidimensional case

so it is employed here as well.

First, N was set to i000.

^

An estimate of I, denoted as I, was computed.

The process was repeated i0 times. Results are given in Table 4.1. Each of

the i0 values of I are given along with the sample mean and standard devia-

tion of I. The process was repeated for N = i0,000 and the results are given

in Table 4.2.
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Table 4.1 Monte Carlo Estimate of the Integral of Example

N = 1,000
A

I

I -2274425E-03

1. I_7607&E-03

i. 4003464E-03

1. 3360464E-03

1. Ic)54387E-03

I. 1761633E-03

!. 47!8326E-03

I. 4165875E-03

I. 445890_E-03

i. 2413473E-c)3

^

Mean of I = !.30iE-3

Lxact value of I = 1.350E-3

Std. Dev. of I = 0.!29E-3

Assuming that I is normal, 90% confidence intervals on I are estimated

as (1.089, 1.513)E-3. Thus, this is the C. I. on I associated winh a

sample of size i0,000.

OR_CINAL PAGE IS

OF POOR QUALITY
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Table 4.2 Monte Carlo Estimate of the Integral of Example

A

N = i0,000 I

I. 22E6500E-03

1. 3768753E-03

!. 3595114E-03

1. 3669265E-03

i. 4250146E-03

1.2714810E-c)3

1 •2380191E-c)3

1,41968_c)E-03

I. 39613GSE-03

.40538 TEE-03

Mean of I = 1.349E-3

Exact value of i = 1.350E-3

Std. Dev. of I = 0.075E-3

^

Assuming that i is normal, 90% confidence intervals on ! are estimated

as (1.226, 1.472) E-3. This is the C. i. on I associated with a sample of

i00,000.

_-.... _,.,'-.Z i:/hTE IS

OF POQ'_ QU.I.L_TY
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4.3 Extension to the Multidimensional Integral

The mean value method can be extended to the multidimensional case. As

an example, the two-dimensional problem will be considered because it is easy

to describe the problem. Extrapolation of the concepts to higher dimensions

is

Shown in Fig. 4.3 is design parameter space for the two random parameter

(X, Y). The probability of failure is the volume under the joint pdf in _,

the failed region. The general strategy for estimating that integral, I,

will be as follows.

1. Locate the design point as a reference for the sampling region.

Because its "exact" location is not critical, and because computer time is

minimized, a crude and fast method (MVFOSM as described in Sec. 4.4) is

employed.

2. A sampling region (integration boundary) is defined as sho_ in

Fig. 4.3. The choice of KI, K 2, K 3, and K 4 is arbitrary. I_ is important to

include all of the probability mass within _. As sho_ in Sec. 4.5, reason-

able results are obtained where all K. _ K = 5.m

3. Uniformly distributed variates u and v are sampled. The distribu-

tions are sho_ in Fig. 4.4 along with the region of integration.

4. g(u, v) is computed to establish whether or not the point lies in _.

5. By subdividing region _ into incremental areas, _A i, the integral

I can be approximated as

i N
AA

fx" fY dx dy = E fxi fYi i
i=l
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Fig. 4.3 Design parameter space and the region of integration
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Contours of the joint PDF

of X and Y

\
g= 0

g > 0

Design

Point

f (v)

u _ U(e, f)

c

_; g < 0

d

f(u)
u _ U(c, d)

Fig. 4.4 Region of integration and contours of the integrand
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. The integral
i

where fxi and fYi are the pdf's of X and Y respectively at A.

is estimated by sampling (u i v )" i=l N, and making the following computa-

tion.

N

A E 6 fx (ui) fY (v.) (4.9)
I =_ i i

i=l

where,
<

6 = Ii " if g(ui, v.) - 0
i i

I0 if g(u i v ) > 0' i

L

(4.10)

In this expression for I AA. is aporoximated by A/N.
' i "

Exactly the same approach is employed for higher dimensional integrals.

It can be seen why the Monte Carlo approach is so convenient for evaluation

of multidimensional integrals. Employing a straightforward integration

scheme, say the trapezoidal rule, computer logic and program statements

associated with negotiating the boundaries can become extremely complex.

For Monte Carlo, the only operation to define a boundary is the computation

of g(_) where u is the vector of uniform variates.

The "bad news" of Monte Carlo is that large sample sizes are required

to reduce confidence intervals on estimates of I to reasonable levels.

4.4 Location of the Desien Point

Consider the performance function g(_)- It is required to locate the

design point (see Figs. 4.3 and 4.4). Note that the design point will depend

upon the method used. The Wu/FPI and the Rackwitz-Fiessler methods are ex-

pected to produce a "high quality" result. But the Hasofer-Lind method can

be employed as well. And a design point can be established using the mean
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value first order second moment method (MVFOSM) originally developed for

computation of the safety index. This method was found to be fast, but

it was later discovered to produce unsatisfactory results for larger prob-

lems. The method used in Program SELSAM is the Rackwitz-Fiessler algorithm

which was found toproduce consistently good results.

4.5 Confidence Intervals: The Efficiency of the Mean Value Method

To run a Monte Carlo integration program, one must first choose (a) the

sample size, N, and (b) the region of integration defined by KI, K 2, K 3,

and K 4. For the examples considered in this study, all of the K's were

assumed to be the same and equal to K. In all cases, M = i0 repetitions

of the evaluation of I were performed for a given N = i0,000 and K. This

was done to estimate the distribution of I for the purpose of constructing

a confidence interval.

Io illustrate the results of the analysis, Table 4.3 shows the estimated

value of the integral for each of M = i0 repetitions for the first example.

N = i0,000 points were used for each estimate I. Therefore, the sample mean

of I, namely 5.22E-4, is then the best estimate of I and is based on a total

sample of i00,000.

The purpose of repeating the integral evaluation (e.g., Table 4.3) is to

estimate the variance of the estimator and then construct confidence intervals

Consider a vector of estimates of I

I = (II, 12, IM) (4.11)
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Table 4.3 Example of a Detailed Summaryof the Results for a Single Value
of K and N.

Performance Function, g = R - S

R _ LN (50., 0.20)f

JS _ LN (20., 0.20)

Median and COV

Sample Size, N = i0,000

Region of Integration, K = 5.0

MVFOSM Analyses: 8 = 2.79 Design Point

R* = 25.14

S* = 24.53

I

1 4.55E-4

2 5.22

3 4.82

4 5.39

5 5.08

6 5.11

7 5.53

8 5.09

9 5.46

i0 5.94

= - ¢(I)

3.32

3.28

3.30

3.27

3.29

3.28

3.26

3.29

3.27

3.24

CPU _econds

2.25

2.30

2.31

2.27

2.28

2.25

2.28

2.31

2.30

2.33

Total CPU Execution Time= 22.9 seconds

^

Sample Mean of I = 5.22E-4

Exact Value of I = 5.35E-4

Bias = Estimated _ 0.98
Exact

^

Sample Standard Deviation of I = 0.39E-4

A

Coefficient of Variation of I = 7.3%
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The sample mean and variance are,

M ^

: i
I =-- E I.

M i= I l

(4.12)

M ^

2 = i_i_ _ (I i - I)
I M-I i= I

(4.13)

Let M = i0. The 95% confidence interval on I using an individual estimate is

< <

I - 2.23 s I - I - I + 2.33 s I (4.14)

The number 2.33 is the student's t variate for n = !0 at a level of 2.5%.

The 95% confidence intervals based on the mean of the estimates is

: 2.33 s I < < : 2.33 s I
I I- I+ (4.15)

Exmmp!e: From the data of Table 4.3, 95% confidence intervals for I are,

(in terms of 10-4),

2.33(.39) < I < 5 22 + 2.33(.39) (4.16)
5.22 3.16 " 3.16

Or_

p = (4.93 < I< 5.51) = 0.95 (4.17)

Suppose it is desired to establish the sample size requirement for a

given accuracy. For example, find the minimum M to ensure that the value

+
of I will be within - 10% of I with a confidence of 95%. Assuming that I

will be normally distributed with a mean of I and standard deviation of

Sl/M_ it follows that 95% confidence intervals on I are,

i --- - ; I i +
A--

(4.18)
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where C I = Sl/l.

+
For- i0%, let

1.96 C I
0.i0 = (4.19)

Therefore, the requirement on M is

>

M - 384 C_ (4.20)

Unfortunately, one does not know C I in advance. However, after analyzing

sever_ check cases, an approximate relationship between C I and n is given in

Fig. 4.5. These figures are actually more applicable to the stratified

sampling version of the mean value method described in Sec. 4.7 below.

Using Fig. 4.5, Eq. 4.20 and Fig. 2.5, one can pre-estimate the sample

size requirement and cost. For example, if the response function has i0

random variables, then C I = 0.80 from Fig. 4.5. The number of blocks of

I0,000 is given by Eq. 4.20 as M = 246. Thus, the total sample size require-

ment is 246 x 104 or 2.46 million evaluations of the integrand. From Fig. 2.5,

the total CPU execution time on the CYBER 175 would be about 344 seconds.

^ +
This is for 95% confidence for I to be within - 10% of I.

4.6 Examples of the Mean Value Method

Other examples of the performance of the mean value method are given

in Tables 4.4 through 4.7.

The mean value method seems to perform better than the direct (conven-

tional or variance reduction methods. But the literature promises that

efficiency of the mean value method will be improved by stratified sampling,

i.e., sampling with a higher density of points in the region where fx is the

largest. This is also called group sampling, or selective sampling, and is

essentially what is often referred to as "importance sampling." In short,

more samples are taken in the more important regions.
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Fig. 4.5 C As A Function of n For Mean Value Method
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Table 4.4

Example i; Monte Carlo Integration

Performance Function g = R- S
%

R _ LN (R, CR) = LN (50., 0.20)

'b

S _ LN (S, C S) = LN (20., 0.20)

Exact I -- pf = 5.35E-4

Sample

Size

N

i000

50O0

i0,000

Region of

Integmation

K

COV of

I (%)

Bias* CPU Execution

Time (sec)**

3.5

4.5

5.0

5.0

3.5

4.5

5.0

28

28

30

8.3

7.2

7.5

7.5

.77

.84

.85

.94

.87

.96

.98

2.5

2.3

2.3

ii .4

24.5

23.3

22.1

*Bias = Estimated I/Exact I; Estimated I is the average of i0

repetitions of i, each having a

sample size of N.

**CYBER 175
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Table 4.5

Example 2

Performance Function

R _ WEI (20., 2.0)

S _ EVD(i0., 2.0)

Exact I -pf = 2.86E-3

g = R - S

Meanand Standard Deviation

Sample
Size

N

i000

!0,000

Region of
Integration

K

3.5

4.5

5.0

3.5

4.5

5.0

COYof
(_)

9.29

12.03

13.64

2.17

2.76

3.05

Bias*

.88

.95

.96

.91

.98

1.00

CPU Execution

Time (sec)**

1.71

1.71

1.71

17.0

17.0

17.0

*Bias = Estimated I/Exact I

**CYBER 175
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Table 4.6

Example 3; Monte Carlo Integration

Performance Function g = R- S2

R _ WEI (20., 4.0)

S _ FRE(3., 0.6)

Exact I - pf = 4.27E-2

Sample
Size

N

i000

i0,000

Region of
Integration

K

3.5

4.5

5.0

3.5

4.5

5.0

10.5

11.3

12.6

Bias*

.88

.93

.93

2.17

2.48

3.02

.92

.96

.98

CPUExecution
Time (sec)**

2.0

2.0

1.9

20.5

19.4

!9.3

*Bias = Estimated !/Exact I

**CYBER175
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Table 4.7

Example 4; Monte Carlo Integration

Performance Function

R _ WEI (48., 3.0)

P _ LN (i.0, 0.16)

T _ EVD('20., 2.0)

g = R -/300P 2 + 1.92 T2_

Meanand Standard Deviation

Exact ! --pf = 1.80E-3

Sample

Size

N

I000

5000

10,000

Region of

Integration

K

3.5

4.5

5.0

COV o f

i (_)

5.3

9.1

i0.i

Bias*

.86

.94

.96

5.0

3.5

4.5

5.0

6.5

3.7

4.8

5.1

1.00

.88

.97

.99

CPU Execution

Time (sec)**

3.4

3.3

3.3

16.4

32.2

32.4

32.5

*Bias = Estimated I/Exact !

**CYBER 175
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4.7 Stratified Sampling; Extension of the Mean Value Method

Fig. 4.3 illustrated for two dimensions, the joint probability density

function '(pdf), the limit state, and the region of failure, _. Show_ is a

"reference point,_' (in this case a design point which could be obtained by

_FOSM or any of the fast probability integration methods) which is "close"

to the peak of the pdf. This reference point is used to define the samplin_

region.

A surm_ary of the stratified sampling scheme is shown in Fig. 4.6. First,

the reference point is established. In program SELS_M, it is defined by a

Hasofer-Lind or Rackwitz-Fiessler design point (user's option). Then the use_

muse decide

i. The number of boxes

2. The size of each box

3. The total number of points: i.e., the sample size

4. The number of points in each box, i.e., how the sample is stratified

Because fx will have its peak close to Lhe _eference eoint, it is antici_
%

that the density of points in Box #3 should be high. Fewer points should be

in Box #2 and still fewer in Box #i. Then, if the user wants to estimate

confidence intervals on his point probability estimate, the sample should be

repeated.

Studies on how to select the parameters above to minimize the sample siz_

for a given confidence interval have been inconclusive. But for some sample

problems, the parameters ss given in Table 4.8 have performed well.
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4.8 Program SELS._M

Program SELS_M performs, by Monte Carlo, numerical integration of the

probability of failure integral using stratified sampling. When only one

box is chosen, (no stratified sampling) the program algorithm is the mean

value method.

A listing of Program SELS_M is given in Appendix D.

Examples of Program SELS_M are given in Tables 4.9 and 4.10. The example

of Table 4.9 has only one box and is therefore the mean value method. In the

second example of Table 4.10, the formula for defining stratified sampling

as given by Table 4.8 was employed.

The program has been exercised on several example problems. The perform-

ance of the program is measured by its accuracy in making point probability

calculation and its corresponding CPU execution time.
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TABLE4.8 Preliminary Recommendaionfor Defining the Parameters for

Stratified Sampling

• Numberof Boxes
t

Size of Each Box

Number of standard deviations

+ from the reference point

Box 1

Box 2

Box 3

Box 4

Total Number of Points in

one sample

Points in Each Box

Box I

Box 2

Box 3

Box 4

Number of Samples

(Note that this is the value which

is being used for the purpose of

estimating confidence intervals

associated with the sampling.)

2

1

i0,000

5OO

i000

2000

6500

lO
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TABLE 4.9

EXAMPLE I : Evaluation of the Probability Integral by the Mean Value Method

(Sampling in only one block)

Response function:

g = R - /300P 2 _ 1.92T 2'

Mean Std. Dev.

R Weibull 48. 3.

P lognormal 1.0" 0.16"

T EVD 20. 2.

*The median and COV are P = 0.9874 and Cp = 0.16

• Use only one box, ISTRIP = 1

+
• Box (sampling region) is - 50 in all directions

• Take IBOX = I0,000 points

• Repeat process NT _ K = i0 times.

This is the input for this problem.

0,10,3
1

S., 10000
R

1,48.,3.
P
4,.987440632,.18
T

3,20.,2.
O.

The output is on the next page.
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VARIABLE DIST. MEAN STD. DEV

R WEIBULL 4.8000E+01 3.0000E+O0

P LOG N. 9.8744E-01 1.6000E-01

T EVD 2.0000E+01 2.0000E+O0

K = 10

SAMPLE (POINTS) = 10000

STRIP (SIGMA) = 5.00

INITIAL STARTING POINT (REDUCED VARIATES)
-2.564 1.783 1.945

ESTIMATE OF !

1.6759E-03

1.7456E-03

1.9782E-03

1 7872E-03

1 8600E-03

1 8472E-03

1.8751E-03

1.7543E-03

1 7949E-03

1.6824E-03

BETA CPU SEC

2.933 3.03

2.g21 3.04

2.882 3.04

2.913 3.05

2.936 2.95

2.903 3.02

2.898 2.g8

2.919 3.04

2.912 3.03

2.932 3.08

1.7801E-03

9.9832E-05

AVG. OF ESTIMATION =

STANDARD DEVIATION =
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TABLE 4. i0

EXAMPLE 2 : Evaluation of the Probability Integral by Stratified Sampling

(An extension of the mean value method)

Response function:

300P2g = R - - 1.92T-

P _

Weibul!

lozncrma!

EVD

Me =_n

4.q.

1. O*

20.

Std. Day.

0.16"

_.o

*The median and COY a_e P = 0.9874 and Cp = 0.16

• Use four boxes, ISTRIP = 4

• Boxes are respective!y (_ 5, _ 3, +- 2, +- i) o in all directions

• Samples in each box are respectively (500, i000, 2000, 6500)

• Repeat process NT _ K = i0 times

This is the input for this problem.

0,10,3
4

5.,500

3.,1000

2.,2000

1.,6500
R

1,48.,3.
P

4,.987440632,.16
T

3,20.,2.
O.

The output is on the next page.
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VARIABLE DIST. MEAN STD. DEV

R WEIBULL 4.8000E+01 3.0000E+O0

p LOG N. g.8744E-01 1.6000E-01

T EVD 2.0000E+01 2.0000E+O0

K = ' I0

SAMPLE (POINTS) = 500 I000 2000 6500

STRIP (SIGMA) = 5.00 3.00 2.00 1.00

INITIAL STARTING POINT (REDUCED VARIATES)
-2.564 1.783 1.945

ESTIMATE OF I

1.6086E-03

1 8204E-03

I.g675E-03

I 7617E-03

1.7030E-03

I 7820E-03

1.8696E-03

1.6840E-03

1.7000E-03

1.8449E-03

BETA

2.946

2.908

2.883

2.g18

2.929

2.914

2.899

2.932

2.g2g

2.9O4

AVG. OF ESTIMATION =

STANDARD DEVIATION =

CPU SEC

3.14

3 Ii

3 I0

3 11

3.0g

3 09

3.08

3.12

3.12

3.12

1.7742E-03

1.0538E-04
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5.0 I_HE HARBITZ ALGORITHM

5.i Preliminary Remarks

In a 1986 issue of Structural Safety, A_If Harbitz presented a Monte

Carlo method which estimates point probabilities [8 ]. The algorithm is

presented as an "efficient" method. The decision was made by the UA team

to develop the method and compare its performance to other available Monte

Carlo sche._es.

The performance function is given as g(X) where _X is a vector of

random variables. The goal of analysis is to compute

p = P[g(X) -< 0] (5.1)

Consider X as a two-dimensional vector.
rb

<

Fig. 5.1 shows the region where g - 0.

From probability theory, p can be evaluated by,

p = _ f_(_) d_ (5.2)

But the integral is difficult to evaluate for higher order vectors. The

Harbitz method provides an estimate of p.

While the method is described in detail in Ref. 8 , a sLm_mary is

provided as foiiows. Also described are modifications to the method to

improve its perfromance relative to the original Harbitz algorithm.

5.2 Expression for Point Probabi!itv

The basic variables X can be transformed to standard normal variates

x using the relationship,

Fi(X i) = _(xi)
(5.3)

75
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The lower case x. denotes the transformed variables. _ is the standard
l

normal distribution function (cdf) and F. is the cdf of X.. Using the
i l

transformation, the performance function can be written in terms of x..
l

This function gl(_) when set equal to zero becomes the limit state.

<

Fig. 5.2 shows the region where gl - 0 in the space of standard normal
t

variates.

The minimum distance from the origin to gl is given as B. In a first

order reliability method (FORM), B provides a first approximation to p,

i.e._

p = _(-_). (5.4)

But an exact expression can be formulated for p. Note that because

x is standard normal, the probability that x will be. in the "B-sphere will
% _ -

be

P[[x! < B] = p[[,_[2 < B2] = Fn (B2) (5.5)

where F is the chi-square cdf with n degrees of freedom, n is the size of
n

the vector X. Harbitz uses this fact and shows, using elementary probabilit:
%

operations, that

p = Pig -< 0]

= p[g < 0 I Ixl > _] (i - Fn (B2)]
(5.6)

Evaluation cf p requires application of a combination of reliability methods.

5.3 Comoutation of D; Basic Considerations

Numerical FORM can be employed to compute B. One method is the

Rackwitz-Fiessler algorithm. The second term of Eq. 5.6 is easily calculated

Monte Carlo is used to estimate the first term of Eq. 5.6. For conveni-

ence, we will let this probability be denoted as PI" The scheme for extimati

Pl is as follows:
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l'nen

where,

i. Sample _ outside the a-sphere

2. Transform to basic variables, X

3. Compute g(_)

Repeat process K times

i

P!= PIg< °II I> 8]= Pl (5.7)

^ K(_)

Pi = K (5.8)

and where K(_) is the number of samples for which g < 0.

extimator of Pl.

5.4

A

Pl is the

A Note About Efficiency

The reason why this method promises to be efficient is illustrated in

Fi_. 5.3. The random points outside the fi-sphere are as i!!us_rated. Note

<

that a relatively high percentage will fall in the region where g - 0. In

^

practice Pl will typically fall in the range (0.05, 0.25). For the special

case where g is linear in normal _, gl will be a straight line and Pl = 0.!0

The point is that confidence intervals on PI' for a given K, are relatively

large if Pl is very small. But if Pl is in the range as indicated, narrow

condifence intervals can be obtained with relatively small sample sizes, K.

For large K, Pl will be approximately normal, and it canLxamp!e

be shown that,

P[pI(I Y) < < l(- - P! - p 1 + _)] = i -
(_.9)

_%ere,

Y = zm12 - Pl

V Pl K

(5.10)
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Compute the required K for 95% confidence intervals within _ 10% of PI"

y = 0.i0 and Zal 2 1.96

^

Then, 384 (i- pl)

For P!

J

= 0.i0, K = 3500.

K = ^ (5.11)

P

"b

For Pl = 0.001, K = 384,000.

This exercise clearly demonstrates why it is efficient to formulate the

problem so as to avoid low probability levels.

5.5 How to Sample _ Outside the B-Spherelx I .> B

Harbitz proposes the following as an efficient sampling procedure. The

first step is to transform the standard normal variates x to polar coordinat_

÷ (R, _) (5.12)

where _O = (E_I' 07' On_l) defines the direction of _ and R defines the

length of _. R and _0 are independent. Now it is required to obtain a random

sample of R and @.

0 2
R- will have an X distribution with n degrees of freedom.

(n/2) - i ! o
(r-) exp (- y r-)

f (r-) = (5.13)
R2 2n/2 F(n/2)

_here F(.) is the gamma function.

0 is sampled as described below.

X. ---- l_J _i R.

where,

R can be sampled from this distribution.

The jth random vector of _ can be sampled a_

(5.14)

(5.15)

332



and where Yi is the ich sample,of a vector of Y.j _ N(O, I), j = i, n. Thus,

_i is a random direction unit vector in x space. This corresponds to sampling

a random O.

But we want to sample so that xj lies outside the B-sphere, i.e., R > B.

The we!!known"rejection technique" will be employed [8 ]. See Fig. 5.4.

Define the sampling domain as [rl, r2] where r I = B and r 2 > B. Experience

has shown that accurate res'u_Insare obtained when r 2 > 3 + B. To improve the

efficiency, perform a transformation

U = exp(- _ R2) (5.16)

>
where = - 2 is a constant whose optimal value depends upon B (see Sec. 5.6).

The sampling domain for U then is,

[ui. u2] = xp l--ra , exp ---c rl
(5.17)

Given that R 2 is _2(n), the density function of u, denoted as h(u) is

proportional no,

h(u) = [- _n (u)]
(n/2)-! (_/2)-! (5.18)

U

A typical function h(u) is plotted in Fig. 5.5. Comparison of Fig. 5.4 and

5.5 provides the motivation for making the transfor.-_a_ion of Eq. 5.16.

The process of sampling points, as demonstrated in Fig. 5.5, continues

until we have u°; i = i, K. Then the sample of R. is obtained from E_. 5.16.
1 l

I (5.19)
R. = / - a _n u. j = I,K ,
3 3

5.7 How to Find a

The one detail missing from the above discussion is how to specify c.

We would like to select a so that the rejection area, as illustrated in Fig.

5.5 is minimized. S. J. Lee has developed a simple program which, for a
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f
W

In the rejection method, a pair of uniformly distributed points

(v, w) are sampled as shown r

W

f

R-

_6 (v, w).
I

This point rejected

j Typical X form of the densi.2 _v

function

_-- This point accepted. A sample

point of r from f _ is r2 E v.

po_ R" J

(v, v) j 2

2 2
r r2

f
V

-- V

Note that for the form of the distribution, many points are rejected.

Fig. 5.4 The Rejection Technique
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Pairs of uniformly distributed variates (v, w) are sampled as shown.

f
%;

W

h(u)_

Rejection Area

J

J

£

i_ A typical form of h(u)

/ (v, w)i

_. this point

_---- (u, w). This point is

accepted; u E v.
J

is rejected

U

U

If

V i

u 2

V

This shows why the transformation of Eq. 5.16 was made.

h(v), very few points are rejected. , ,

For this form of

Fig. 5.5 How U. is Sampled
I
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given Ul, u2, and n, minimizes the rejection area. This is a feature in the

UA/Harbitz program.

5.7 The Estimate of p

Finally, a sample of _j; j = i, K can be made from Eq. 5.14.

indicated in Sec. 5.3 from x.TX is computed, then g(_).
, _j

is computed by Eq. 5.8, and the point probability estimate is

^ A

P = Pl [i - Fn (S2)]

As

^

Finally, Pl

(5.20)

5.8 The UA/Harbitz Program

The listing of the UA/Harbitz program for computing point probabilities

is given in Appendix F along with a description of the input.

An example is presented in Tables 5.1 and 5.2. A definition of the

problem and an example of the input file is provided in Table 5.1. Attached

the output, given in Table 5.2, are notes which describe some of the terms.

5.9 Efficiency of the Harbitz Method

The Harbitz algorithm for point probability estimation by _nte Carlo

looks promixing as an independent check on FPI in NESSUS. But the efficiency

of the Harbitz method depends strongly upon the number of independent random

design factors as well as the probability level. Harbitz efficiency decreases

substantially with increasing numbers of random variables in the response

function. Also, efficiency decreases as the probability levels become lower,

but the loss of efficiency is far less than with conventional Monte Carlo.

In the following, the efficiency of the Harbitz method is quantified and com-

pared to direct Monte Carlo.
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Table 5. l Example Problem for }larbitz ._'ethod

g(X) = a - 00P 2 + i.92T-

_R 48 _p 1.0

oR = 3 Op = O. 16

R % WEi _ _, LK

_T = 20

O = 2
T

T _ EVD

This is an example of the input file

THIS IS EXAKPLE 7

I.D-4,3,10000,0.
R

I.,48.,3.

P

4.,.987440632,.16 *
T

3.,20.,2.

*Note that P is lognormal; thus the median

•

P = _p/ i + Cp

is entered.
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Table 5.2 Output of Harbitz Program For Example Problem

DESIGN VARIABLES

VARIABLE DISTRIBUTION KEA_NIKEDIAN STD/COV

R _EIBU_L 4.8OOOE+01 3.0OOOE+OO

p LOG $.874__E-01 1.80OOE-OI

T EYD 2.0000E+OI 2.0000E+O0

(NOTE: TEE KEDIAN AND C0¥ USED F0R LN)

BETA (SPHERE)=
3.085------¢>-First order reliability analysis (R-F)

NU_ER 0F ¥ARIABLES = 3

AREA RATIO, AR = .gg34_ 99.34,% of points sampled will be accepted

ALPHA = 2.1880-----D_ value of _ corresponding to the area ratio

NL_BER 0F SAMPLES = lOOO0----q>- value of K

TOTAL ND_IBER 0F G < O = 782-----q>" value of K(_)
Actually had to sample 10,089 poi

TOTAL NUNER 0F POINTS SAMPLED = IOO8g----q>- 89 were rejected.

PROBABILITY OUTSIDE BETA SPHERE = _ 318E-2_ 1 - F (82)--" n

PROBABILITY 0F FA!LL_RE = 1.81274.E_O3-----D_ The central result; Eq. 5.20

BETA = 2.gog05

95 CONFIDENCE INTERVAL 0N PF

LOWER = 1.6gO75E-O3

UPPER = 1.93472E-03

Eq. 5.9

cPu F_ CUTION Trim (SEC.)= 4.17

338



Consider the response function Z = Z(_) where _ is a vector of n independ-

ent random variables (XI, X ). To evaluate the CDF of Z at point Z let
n o

g(_) = z(x) - z (5.21)
O

The CDF of Z at Z is
O

<

F(Z ) = P[Z(X) - Z ]
O O

= P[g(_) _ O]

(5.22)

By conventional or direct Monte Carlo, a random sample of size K is

obtained, and the CDF of Z at Z is estimated as
O

_ K(_)
Pl K

(5.23)

<

where K(_) is the number of samples for which g - 0. Thus, Pl is an

estimate of p = F(Zo).

i - _ confidence _'ttervals on _ = F(Z ) are given (for large K) as,
• 0

^

< <

P[Pl (i - y) - p - P! (i + y)] = i -
(5.24)

where

y = z ---- (5 25)_12 / l-- --

Pl K

The efficiency of the method is described by the number of samples

(K) required so that Pl is within - 10% of F(Z o) with a confidence of 9)_o.

Thus,

y = 0.i0 za/2 1.96

^

And the relationship of K with Pl is given as

^

384 (1 - pl )
K = . (5.26)

Pl
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Eq. 5.26 is shown in Fig. 5.6 as the R = 1 curve. Clearly efficiency i

very poor at lower probability levels.

To get an idea of sampling costs, the following approximations

were observed on the UA CYBER175.

CPUExecution Time, (seconds)

T = (1.4E-4) K.n (5.27)

K = sample size

n = number of variables

Computer charges at $130/hr; cost C in $)

C = 0.036T (5.28)

For example, a response function having n = 5 variables, requiring a sample o_

K = 105, would run for approximately T = 70 seconds (1.2 minutes) and cost

C = $2.50 on the CYBER175.

The Harbitz method is a schemeof selective sampling (coule be considere

as a form of importance sampling). The point estimate of p = F(Zo) can be

written form Eq. 5.20 as

= _l R (5.29)

where R is the reduction factor, defined as

R = i - r(_2; n)

<

0 < R - 1

(5.30)

R is the probability that X sampled at random will fall outside a sphere in

n-dimensional u-space (space of transformed standard normals) of radius 5.

Plotted in Fig. 5.7 is R as a function of n and _.

The value of the Harbitz method can be seen upon considering Eq. 5.29 and

Fig. 5.6. Clearly as R gets smaller, the sample size K required becomes small
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Fig. 5.6 Efficiency as a Function of Probability Level and Reduction Factor

341
ORIGINAL PAGE IS

OF POOR QUALITY



0.001

Fig, 5.7 Reduction Factor R as a Function of Beta and the Number of Variables.
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and the scheme becomes more efficient. However, Fig. 5.6 does not tell the whole

story with regard to Harbitz. Some extra computer time is required to run the

Rachwitz-Fiessler analysis; and the sampling process may take more time as well.

As we now examine Fig. 5.7 in light of Fig. 5.6, we note that large R (poor

efficiency) is associated with larger n and smaller B. In the latter case, as

demonstrated in the example below, the loss of efficiency in small _ (large R)

is partially offset by higher probability levels (see Fig. 5.6).

In summary, the Harbitz method will always require a smaller sample rela-

tive to direct Monte Carlo. However, it is likely that direct Monte Carlo would

require less running time for points with probability levels, say between

0.i0 and 0.90. Location of these transition points are not known at this time,

but they are not critical. But what is important is that Harbitz can be em-

ployed effectively for the tail regions of the distribution. The example

illustrates why.

Example. An example which contrasts sample sizes by direct Monte Carlo

with Harbitz is given in Table 5.1. The response function Z(_) is assumed to

be a linear function of _. There are n = 5 variables and all X. are assumedl

to be normal.

Required sample sizes K for estimates Pl which are within +- 101% of D

with a confidence of 95% are shown in Table 5.1 for both the Harbitz and

direct Monte Carlo methods. Clearly, Harbitz does much better at the lower

levels of p.

But note how the number of factors n affect the requirement on K. At

106
the point where _ = 4.4, K must be 60,000 for n = 5. But for n = i0, K = ,

and for n = 20, K % 2 x 107

In summary, Harbitz becomes impractical for large n. This is an undesir-

able characteristic that it shares with all of the other Monte Carlo schemes.
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EXAMPLE

TABLE 5. i Number of Samples Required for Harbitz Compared to Conventional

Monte Carlo for Different Probability Levels

Random Design Factors: n = 5

Response Function: Linear with normal variates

K

BETA (B) ] R

4.4

3.7

3.0

2.0

I p

I nOl 15.5E-601 1.0E-4

0.i0 1.4E-3

I0.50 2.3E-2

Harbitz Direct Monte Carlo

6 x 10760,000

40,000 4 x 106

25,000 200,000

i0,000 20,000

*This is the approximate minimum sample size required for an estimate P!

+
to be within - 10% of p with a confidence of 95%.
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6.0 SUMXIARY: A COMPARISON OF THE PERFROMANCE OF MONTE CARLO METHODS FOR

PROBABILITY ESTImaTES

6.1 The Methods Studied

Computer programs were developed for the following Monte Carlo methods:

i. Conventional Monte Carlo

2. Variance reduction

3. Mean value method with stratified sampling

4. The Harbitz method

Each program was verified using several example problems. The performance

of each method was studied. Specifically, computer CPU time to produce a point

+
probability estimate within - 10% of the exact value with 95% confidence is

measured.

6.2 A Sumn_nary of the Performance of Each Method

Results of the performance study are summarized in Fig. 6.1 where

CYBER 175 CPU time is plotted as a function of probability level B and number

of variables, n. It is important to note that 8 is related to the tail prob-

ability level p by

p = _ (-_) (6.1)

where _ is the standard normal CDF. Computer time for each method depends

on factors other than probability level and number of variables. The dis-

tribution type for each factor and the form of the response function

influence computation time. Therefore, the curves of'Fig. 6.1 must be

interpreted as characterizing the relationships for purposes of comparison.
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6.3 Commentary on the Implications of Fig. 6.1

Several general conclusions can be made regarding the results presented

in Fig. 6.1.

i. Fast probability integration (e.g., the Wu/FPI method) is far

more efficient than, Monte Carlo.

2. Variance reduction does not appear to be competitive with the

other methods.

3. For small numbers of variables, the mean value and Harbitz methods

are very efficient with the Harbitz method having a slight edge.

4. Computing time for both the mean value and Harbitz methods increases

sharply as the number of variables increase.

5. For small numbers of variables, conventional Monte Carlo is not

efficient. But the increase in computing time increases linearly with the

number of variables. Because these curves are flatter than the mean value

or Harbitz curves, conventional Monte Carlo actually becomes more efficient

relative to each of these methods above a given n.

6. Conventional Monte Carlo gets very expensive as the probability

level decreases. Note that the B = 4 curve is off of the chart.

7. One feature of conventional Monte Carlo is that a full sample of

the response variable is generated. Therefore, the entire CDF of the

response variable can be generated. On the other hand, several probability

points have to be comguted using the other methods. And the accuracy will

be better for larger probability levels and worse for smaller p.

In summary, a general conclusion is that the Harbitz method seems to

be the preferred approach. Note however, as the probability level p gets

larger (and B smaller), the Harbitz method approaches conventional Monte

Carlo. This can be seen from Fig. 5.7 in which R + 1 as 5 _ O.
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A Summary of Efficiencies of Four Monte Carlo Methods for Compueing

Point Probabilities (for Monte Carlo +-10% accuracy with a confidence

of 95Z).
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APPENDIXA. RANDOMSAMPLESFROMGIVENDISTRIBUTIONS

Following are the algorithms used to generate random variates from

the normal, lognormal, Weibull, extreme value (Type I), and the Frechet

distributions. The computer, using a congruential algorithm, samples

random numbers u. from a uniform distribution U(0,1) Forms given below1

transform uniform variates to variates X i of other models.

Antithetic variates xl (defined as having a negative correlation toi

x.) are generated as shown.- These antithetic variates are used in theI

variance reduction method described in Section 3.0.

No

Normal distribution, N(U, o); sample two uniform variates, u.
i

and ui+ I. Use the Box-Muller algorithm [ i, 2 J.

x. =[/-2 _n(u.) I cos(2_ ui+!) ] _ + ui l

I
x. = -x. + 2,¢

1 1

g °

%

Lognormal distribution, LN(X, Cx) ; sample two uniform variates,

u i and ui+ I. Use the Box-Muller algorithm [ i, 2 ].

OX = _n (i + C2) '

%

U,, = _n X
A

X = [exD(/--2 Zn(u.)cos (2,-r ] g- _Ixi l Ui+l ) °X

x' = exp(-x + 2 UX )i 1

C. Weibull distribution

Fx(X) = 1 - exp ( - (_)) = u _ U[0,1]

1 - u = exp (_)) _ U[0,1]

- £n (i - u)=(_)

Thus,

x = B(- gn (i - u.)
i l

l/_

1/a
x_ = S(- gn (u.))
1 1 349



D° EVD distribution

Fx(X ) = exp (-exp(-a(X - 8)) = u _ U[O,I]

exp (-a(x- _)) = - _n u

- _(x - 8) = _n (- _n u)

Thus,

1

x. = B - -- £n(- £n(ui))

x', = 8 _ _I £n(- £n(l - ui))
1

E. Frechet distribution

_v--# kFx(X ) = exp = u _ U[0,1]

k _n(u)
= --

Thu s,

x. =v (- _n(u.))
i !

-i/k

x. = v (- In(l - u.))
-t 1

-i/k
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APPENDIXB. LISTING OF CONVENTIONALMONTECARLOPROGRAM(COMOC)

This version runs on the VAXand the CYBER175. It is not interactive.

The performance function is introduced in subroutine LSFMC as XA.

See listing.

Card i Limit state function (not used in program; only printed on output)

Card 2 Number of trials; number of variables (free format)

Card 3 PLOT and ISTD type

PLOT: Y.'s are sorted to construct empirical CDF
i

0 = no sort

1 = Y.'s are sorted
i

ISTD; option to enter standard deviations or coefficients of

deviations or coefficients of variation of each variable

(if !ognormal, always use COV).

0 = COY

1 = Std. dev.

Now enter each variable, its distribution type, and its moments.

Card 4 Variable name.

Card 5 Distribution, mean, and standard deviation

i = WE! (Weibull)

2 = NORM (Normal

3 = EVD (Extreme value distribution)

4 = LN (Lognormal; always use median and COV)

5 = FRE (Frechet)

Then repeat 4 and 5 for all of the other variables.
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C

8004

7901

g13

1234

C

C,

C

C

" I"KU_M _J_L. l,.t r_ii-U 1 _U i l'U-i _ i _F E.,b-- J.I'i,'- V I , ! ,_.r -r'_----UU ! ru ! )

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION INAME (20), XMEAN(20), XSTD (20), DIST (20), DTRANS (20), X (20)
DIMENSION Y (I0000), F (S),AL (20), BE (20)

COMMON /TWO/ PI,PI2,SPI2
CHARACTER*80 GRS, FIN, FOUT, AA,7, BB, 6,CC,3, DD,3, EE,7

CHARACTER*7 INAME, DTRANS

DATA AA/'WEIBULL' /

DATA BB/' NORMAL' /

DATA CC/'EVD' /

DATA DD/'LOG'/

DATA EE/'FRECHET'/

CALL RANSET(O) FOR CYBER

CALL RANSET (0)

CONTINUE

READ(5,'(A)',END=8888) GRS

READ (5,,) K,N

READ (5, ,) PLOT, ISTD

READ(5,,) ISEED FOR VAX

DO 7901 I=I,N

READ (5,' (A) ') INAME(1)

READ(S,,) DIST(I) ,XMEAN(1) ,XSTD(I)
CONTINUE

IF(ISTD.EQ.O) THEN

DO g13 I=I,N

IF(DIST(1).EQ.4.) CO TO 913

XSTD (I)=XMEAN (I),XSTD (I)
CONTINUE

END IF

IF (K.GT. 10000) K=IO000

DO 1234 I=I,N
AL(I)=O.DO

BE (I)=0. DO
CONTINUE

PI=4. DO,DATAN (1
PI2=PI+PI

SPI2=I. DO/DS_RT

DO 1 I=I,N

IF (DIST (I). Eq. I.)

IF (DIST (I). EQ. 2.)

IF(DIST(I) .ER.3 )

IF(DIST(I) .ER.4 )

IF (DIST (I).Eq. S

IF (DIST (I). EQ

IF (DIST (I). E_

IF (DIST (1) .E_
CONTINUE

•DO)

(PI2)

CONVENTIONAL

MONTE CARLO

PROGRAM (COMOC):

Runs on the VAX

or CYBER 175

DTRANS (I)=AA

DTRANS (1)=BB

DTRANS (I)=CC

DTRANS (I)=DD

) DTRANS (I)=EE

1.) CALL WEI(XMEAN(1),XSTD(1),AL(I),BE(I))

3.) CALL EVD(XMEAN(I),XSTD(I),AL(I),BE(I),PI)

5.) CALL FRE(XMEAN(1),XSTD(I) ,AL(I),BE(1))

THE DATA IS PRINTED OUT.

WRITE(6,11) ORS,K,N

WRITE (6,12)

WRITE (6,13) (INAME (I),DTRANS (I),XMEAN (1),XSTD (I),I=l, N)
CENERATE RANDOM # AND CORRESPONDINO RANDOM VARIABLE

NL_--O

DO 4 I=I,K

DO 3 J=I,N
CALL GENX (DIST (J),AL (J),BE (J),X (J), XMEAN (J),XSTD (J),ISEED)
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CONTINUE

CALL LSFMC(Y(I),N,X)

IF(Y(I) .LE.O.DO) NU_=NU_+I
CONTINUE

SORT Y

I CALL STAT (Y,K,'(MEAN,YSTD, YMED, YCOV)

I WRITE (6,IS) YMEAN, YSTD, YMED, YCOV

ROUTINE TO ACCUMULATE NUMBER OF TRIALS WITH NEGATIVE Y(I)
VALUES AND PRINT OUT RESULTS

RATIO = DBLE(NL_)/DBLE (K)

WRITE(6, g) NUM, RATIO

FORMAT(/,IOX,'NUMBER OF NEC Y VALUES=',I5,'
÷'PERCENT OF TRIALS=', Fg. 6)

IF(PLOT.Eq.O.) GO TO 3456

CALL {_SORT(Y,K)

',4X,

FHE SORTED VALUE OF Y AND THE EMPIRICAL CDF ARE PRINTED.

WRITE (6,I017)

FORMAT(////,I4X, 'SORTED VALUES OF Y AND THE EMPIRICAL CDF',/)
Jl=I

J2=5

WRITE (6,1003) J1, (Y (I), I=J1, J2)
FORMAT(1X,'I = ',I5,5E13.5)
Jl=Jl+5
J2=J2÷5

IF(JI.QT.K) CO TO 3031
IF (J2. GT. K) THEN
J2=K
GO TO 3O3O
END IF
GO TO 3030
CONTINUE

WRITE (6,67)
FORMAT(/)
J---O
Jl=I

DO I009 I=I,K
J=J+l

F (J)= (DBLE (I)-. 5)/DBLE (K)

IF (d. Eq. 5. OR. I. ER. K) THEN
WRITE(5,1003) JI,(F(L),L=I,J)
J=O

Jl=Jl+5

END IF

CONTINUE

CONTINUE

]RMAT(5(/),3OX,'MONTE CARLO SOLUTION',5(/),IOX,

LIMIT STATE FUNCTION : ',A,5(/),IOX,
;AMPLE SIZE, K=',I7//IOX,'NL_BER OF RANDOM VARIABLES,
)RMAT(26X,'RANDOM VARIABLES',//IOX,'VARIABLE',2X,
)ISTRIBUTION',8X,'MEAN',I2X,'STD DEV')

IRMAT(/llX,A7,SX,A7,5X,E12.5,SX,E12.5)
IRMAT(/////IOX,'STATISTICS OF Y :

;TD DEV =',E13.S//lOX,'MEDIAN =,
3.5,4(/))

N=',I3///)

'//IOX,'MEAN =',E13.S//IOX,
,EI3.S//IOX,'COV =',
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17 FORMAT(1H1,2 (/), 14X, 'SORTED
19 FORMAT((5E13.5))

GO TO 8OO4
888 CONTINUE

125 STOP

1

C2
2

"3,

C4
4

5

C
C

VALUES OF Y AND THE

END
SUBROUTINE STAT(U,M,XM,STD,XMED, COY)

THIS SUBROUTINE CALCULATES THE STATISTICS (MEAN,STD

OF Y FUNCTION.

63

64

EMPIRICAL CDF')

DEV, MEDIAN, COY)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION U(M)

i

XK=M
XM--O.
DO 63 I=I,M

XM=X_+U (I)
CONTINUE

XM=XM/XK
STD--O.
DO 64 I:I,M

STO--STD+ (U (I) -X_) ,,2
CONTINUE
STD---STD/(XK-1. DO)
STO=DSqRT (STD)
COV--STDIXM
XMED=XM/DS_RT (I. DO+COV,,2)
RETURN
END

SUBROUTINE GENX (DIST, ALPHA, BETA, X, XMF___AN, XSTD, ISEED)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON/TWO/ PI,PI2,SPI2

354

IDIST=INT (DIST+. 1)
AA=RAN(ISEED) FOR VAX
AA:RANF 0
GO TO (I, 2,3,4,5), IDIST
X=BETA* (-DLOG (AA)) ,, (I .DO/ALPHA)

RETURN
BB=RAN(ISEED) FOR VAX
BB=RANF 0
E=DS_RT (-2.DO,DLOG (AA))

X=E,DCOS (PI2,BB) ,XSTD+XWEAN
RETURN

X=BETA-DLOG (-DLOQ (AA))/ALPHA

RETURN

BB=RAN (ISEED) FOR VAX
BB=RANF 0

SDX=DSQRT (DLO0 (1.DO+XSTD*,2))

UX=DLOQ ()(MEAN)
E:DS_RT (-2. DO.DLOG (AA))
X=DEXP (E,DCOS (PI2,BB) ,SDX+UX)

RETURN

X=BETA* (-DLOG (AA)) ,, (-I. DO/ALPHA)

RETIJRN

END
SUBROUTINE BISECT (COV, ISION, ALPHA)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

ISIGN = 1; WEIBULL DIST.
= 2; FRECHET DIST.

GENX obtains

random samples

from distributions

RAiN is library

uniform random

number generator

for CYBER 175



F (X, COV) =- (1. DO+COV,,2) ,GAMMA (X) .,,2+QkJAMA (2. ,X)
IF(ISIQN.EQ.1) XI=COV,,(1.08)
IF(ISIGN.E_.2) XI=COV,, (.677)/2.33
IF (ISIQN. E_. 2. AND. X1. QT.. 4gDO) XI=. 489gggg9
IF(ISIQN.EQ.1) FI=F(X1,COV)
IF (ISIGN. EQ. 2) FI=F (-X1, COV)
IF(DABS(FI).LE.I.D-IO) QO TO 1
X2=XI+. OIDO

IF(ISIQN.Eq.I) F2=F(X2,COV)

IF (ISIQN. EQ. 2) F2=F (-X2, COV)
FI2=FI,F2

IF(F12.LT.O.) QO TO 20
IF (DABS (El). QT. DABS (F2)) XI=X2
IF (DABS (F1). LT. DABS (F2)) XI=X1-. 01DO
Qa TO 7
CONTINUE

X3= (XI+X2) ". 5DO
IF(ISIQN.E_.I) FI3=F(XI,COV).F(X3,COV)

IF (ISIQN. Eq. 2) FI3=F (-XI, COV) •F(-X3, COV)

IF(FI3.LT.O.) X2=X3

IF(FI3.QT.O.) XI=X3

DX=DABS (XI-X2)

IF(DX.QE.I.D-9) GO TO 2
ALPHA=I .DO/XI
RETURN

END

SUBROUTINE WEI (X'_EAN,XDEV, ALPHA, BETA)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COV=XDEV/YJ_EAN

CALL BISECT(COV, I,ALPHA)

ALI=I. DO/ALPHA

BETA=XMEAN/GAMMA (ALl)
RETURN
END

SUBROUTINE FRE (XMEAN, XDEV, ALPHA, BETA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COV=XDEV/XMEAN
CALL BISECT (COV, 2, ALPHA)
ALI=I. DO/ALPHA

BETA=XMEAN/GAMMA (-ALl)
RETURN
END
SUBROUTINE EVD (XMEAN, STD, ALPHA, BETA, PI)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
ALPHA=PI/(STD, DSE[RT(6. DO) )
BETA=>O4EAN-. 57721566490153/ALPHA
RETURN
END

DOUBLE PRECISION FUNCTION GAMMA(Y1)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /TWO/ PI,PI2,SPI2
X=YI +I. D+O

Z=X

IF(X.QE.6.0D+O) QO TO 456
N:INT(X)
Z= (S.OD+O)-N+X
Y=I .D+O/Z,*2
ALQ= (Z-. 5D+O) ,DLOG (Z) +. 5D+O,DLOG (PI2) -
Z- (I.D+O/(12. D+O-Z) )•(((Y/O. 14D+3-I. D+O/O. 105D+3) ,Y+

1.D-,O/.3D+2) ,Y-1 .D+O)
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3
457

IF(X.CE.6.D÷O)CO TO 457
ITE=6-N

DO 3 J=I,ITE

A=X÷J-I .D+O

ALG=ALG-DLOG (A)

CONTINUE

GAMMA=DEXP (ALe)

RETURN

END

SUBROUTINE QSORT(A, N)

IMPLICIT DOUBLE PRECISION (A-H,D-Z)

DIMENSION A (N),KSL (240), KSR (2401

KS=I

KSL (1)=1

KSR(1)=N
CONTINUE

L=KSL (KS)

KR=KSR (KS)
KS=KS-I

CONTINUE

I=L

J=KR

LR= (L+KR)/2

X=A(LR)
CONTINUE

IF(A(I) .LT.X) THEN
I=I.l

GO TO 30
END IF

CONTINUE

IF (X.LT.A(J)) THEN
J=J-I
GO TO 40
END IF

IF(I.LE. J) THEN
W:A(1)
A(1)=A(J)

A(J)=W
1=141

J=J-1

END IF

IF(I.LE.J) GO TO 30

IF (I.LT. KR) THEN
KS=KS÷I

KSL(KS)=I

KSR (KS)=KR
END IF

KR=J

IF(L.LT.KR) GO TO 20

IF (KS.NE.O) GO TO 10
REnJRN

END

SUBROUTINE LSFI_C()Ok,N,X)
IMPLICIT DOUBLE PRECISION

DIMENSION X(N)

XA=X (I)-X (2)
RETURN

END
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MONTE CARLO SOLUTION

LIMIT STATE FUNCTION : R=S

SAMPLE SIZE, K= 10000

NUMBER OF RANDOM VARIABLES] N= 2

RANDOM VARIABLES

VARIABLE DISTRIBUTION MEAN STD DEV

R NORMAL .50000E+02 .50000E+OI

S NORMAL .20000E+02 .12000E.02

STATISTICS OF Y :

MEAN = .30027E+02

STD DEV = .13060E+02

MEDIAN = .27535E+02

COV = .43493E+O0

NUMBER OF NEG Y VALUES= 94. PERCENT OF TRIALS= .009400
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APPENDIXC. THESORTROUTINE: "QUiCKSORT"

QUICKSORTis described in detail in the book by Wirth [7], who describes

its performance as "spectacular," and claims that it is the best sorting

method on arrays knownso far. The method is based on exchanges and the

inventor C.A.R.Hoare recognized that sorting becomesmost efficient when

exchanges are madeover large distances.
The table below shows execution times (in milliseconds) consumedby

several proposed sorting methods as executed by the PASCALsystem on a

CDC6400 computer. The three columns contain times used to sort the

already ordered array, a random permutation, and the inversely ordered

array. The left figure in each column is for 256 items, and right one

for 512 items.
In summary, the computational effort needed for QUICKSORTis of the

order of n log n.

Ordered Random Inversely Ordered

Straight insertion I2

Binary insertion 56

Straight selection 489

Bubblesort 540

Bubblesort with flag 5

Shakersort 5

Shellsort 58

Heapsort 116

Quicksort 31

Mergesort 99

23 366 1444 704 2836

125 373 1327 662 2490

1907 509 1956 695 2675

2165 1026 4054 1492 5931

8 1104 4270 1645 6542

9 961 3642 1619 6520

116 127 349 157 492

253 I10 241 104 226

69 60 146 37 79

234 102 242 99 232

Execution Times of Sort Programs.
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APPENDIX D. LISTING OF THE VARIANCE REDUCTION MONTE CARLO PROGRAM (VARED)

This version runs on the VAX and the CYBER 175. It is not interactive.

The performance function is introduced in subroutine LSFHC, then compiled

and linked to the rest of the program.

Data Input for the VAX Version Variance Reduction Program

Card i Limit State Function (not used for calculations in the program)

Lx: g = R - S or R = S, etc.

Card 2 Number of Trials (the preliminary value of K); Number of Variables;

Maximum Error in Secant Method for Solution of Maximum Impact

Variable (a small number)

Lx: i000, 3, I.D-6

or I0000,5,1.D-7

Card 3 Confidence Interval; Gamma; ISTD;

a. C.I. = 0 to i00 in percent: Lx: 90; implies 90% C.I.

< <

b. Gamma 0 - ¥ - i, but typically choose y from 0.05 to 0.20.

See Eq. 3.21 ff.

c. ISTD = OPTION to enter standard derivations and coefficients

of variation of each variable (for LN Dist, always use COV)

0 = COY

1 = Std. dev.

Card 4 Enter ISEED

Any integer number between 0 and 262,139 to start the random sampling.

Ex: 23, 579, etc.

Card 5 Enter variable name. (Free format)
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Card 6 Enter corresponding distribution, mean, and standard deviation

(if LN always input median and COV); Ex: i, 20, 2

a. dist. = 1 = Weibull

2 = Normal

3 = EVD

4 = Lognorma! (LN)

5 = Frechet

Then repeat 5 and 6 for all of the other variables.



PROGRAM GMC
PROGRAM GMC(INPUT,OLrTPUT,TAPES=INPUT,TAPE6=OUTPLFI) FOR CYBER

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION 1NAME (20),)(MEAN(20),XSTD (201, DIST (20), DTRANS (20),X (201

DIMENSI ON Y (10000), F (5), AL (20), BE (20), XA (20), TX (20), TS (20)
COMMON /lhVO/PI,SPI2, PI2
CHARACTER'70 GRS, FIN, FOUT, AA*7, BB.6, CC.3, DD.3, EL.7

CHARACTER* 7 INAME, DTRANS

DATA AA/'WEIBULL'/

DATA BB/'NORMAL' /

DATA CC/'EVD'/

DATA DD/'LOQ'/

DATA EE/' FRECHET'/

READ(S,' (A)',END=8888) QRS
READ (5, ,) K,N,EPS
READ(5, .) ZAL,GAM,ISTD,PLOT
FOR CYBER, CALL RANSET(O) AND SKIP
READ(5,.) ISLED
DO .7901 I=I,N
READ(5,' (A) ') INAME(I)
READ (5,,) DIST (I),XMEAN (I),XSTD (I)
CONTINUE

CONTINUE

IF (ISTD. Eq. O) THEN
DO 913 I:I,N

IF(DIST(I).Eq.4.) GO TO 913

XSTD (I)=X_EAN (I) ,XSTD (I)
CONTINUE

END IF

IF (K.GT. I0000) K:IO000

ISLED

Program VARJZD. Monte

Carlo using variance

reduction method; runs

on the VAX or CYBER 175

DO 1234 1=1,N

AL (I)--0.DO

BE(I)=O.DO

IF(DIST(I) .EQ.4.) THEN
TX (I)=XMEAN (I),DSQRT (1.DO,XSTD (I),,2)

TS (I)=TX (I),XSTD (I)
ELSE

TX (I)=XMEAN (I)

TS (I)=XSTD (I)
END IF
CONTINUE

PI=4. DO,DATAN (1.DO)
PI2=PI+PI

SPI2=I. DO/DSQRT (PI2)

DO I I=I,N

IF (DIST (I).Eq. 1.)

IF(DIST(I) .ER.2.)

IF (DIST(I) .E_.3.)
IF (DIST (I). EQ. 4.)
[F(DIST(I) .EQ.5.)

IF(DIST(I) .EQ.1

IF (DIST(I). EQ. 3

IF (DIST(I) .ER.5
:ONTINUE

DTRANS (I)=AA

DTRANS (I)=BB

DTRANS (1)=CC

DTRANS (I)=DD

DTRANS (I)=EE
•) CALL WE1 (XMEAN (I),XSTD (I),AL (1),BE (I))

•) CALL EVD (XMEAN (I),XSTD (I),AL (I),BE (I),PI)

•) CALL FRE (XMEAN (I),XSTD (I),AL (I),BE (I))

:.DATA IS PRINTED OUT.
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701

70O
C

g8

559

581

563

g8

7O3

702
C

MAIN LOOP USINQ ANTITHETIC VARIANCE

FIND MAX. IMPACT VARIABLE

DQ:O.DO
CALL LSFI_C(Q,N,TX)
DO 7OO I=I,N

TX (I)=IX (I).TS (I)
CALL LSFI_C(DGB, N,IX)

DGA:DGB-Q
IF (DABS(DQA).LE.DABS(DQ)) GO TO 701
IV=I
DQ=DQA
TX (I) =TX (I) -TS (I)
CONTINUE

WRITE(S, 11) ORS,K,N

REDUCTION METHOD

WRITE(6,g6) ZAL,QAM
FORMAT(fOX, 'CONFIDENCE INTERVAL = ',F5.2,' %',//,

$ IOX,'QAMMA = ',F6.2,///)
WRITE(6,55g) IV
FORMAT(IOX, :MAX. IMPACT VARIABLE = xc',12, ') ',/)
IFCDQ.LE.O.DO) WRITEC6,561)
FORMATCIOX, 'VARIABLE TYPE IS STRESS',///)
IF (DQ. QT. O. DO) WRITE (6,563)
FORMAT(lOX, 'VARIABLE TYPE IS STRENQTH;,///)

WRITE (6,12)
WRITE (6,13) (INAME (I), DTRANS(I), XMEAN(I), XSTD (I), I=1, N)

CALCULATE PROB. OF FAILURE
KI=I
K2:K
ICO=l
CONTINUE
DO 702 I=K1,K2
DO 7O3 J:I,N
IF (J . Eq. IV) GO TO 703
CALL OENX(DIST (J), AL (J), BE (J), X (J), XA (J), XMEAN(J),XSTD (J), ISLED)
CONTINUE

IF(DQ .GT.O .DO) A=TX (IV)-3 .DO*TS (IV)

IF (DQ.EL. O.DO) A=TX (IV)+2. DO.TS (IV)

B=A+TS (IV)
CALL SECA (EPS, A,B,IV, N,X)
CALL CDFPDF (DIST (IV), AL (IV), BE (IV),X (IV),XMEAN (IV),XSTD (IV),

$ I,CDFI,PDF)

IF(DQ.LE.O.DO) CDFI=I .DO-CDFI

IF (DQ.QT. O.DO) A=TX (IV)-3. DO.TS (IV)

•IF (DG.LE. O.DO) A=TX (IV)÷2. DO,TS (IV)

B=A+TS (IV)
CALL SECA (EPS, A, B, IV, N, XA)
CALL CDFPDF (DIST (IV), AL (IV), BE (IV), XA (IV), X_EAN (IV), XSTD (IV),

$ 1, CDF2,PDF)
IF (DQ. LE. O. DO) CDF2=I . DO-CDF2
Y (I): (CDFI.CDF2) ..5DO
CONTINUE

123 CALL

IF (ICO .E_[. I)
Y_=YMEAN
YS:YSTD
Y_E=Y_ED
YC=YCOV

YMI=Y_

STAT (Y, KI, K2, YMEAN, YSTD, YMF_D,YCOV)
THEN
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ELSE
YM= (K,Y}dl+ (K2-K) ,Y_EAN)/K2

YSI=YS,,2, (K-l) +K,YMI,,2+YSTD,,2, (K2-K-1) + (K2-K) ,YMEAN,,2
YS2=YS1-K2,YM,,2

YS=DSqRT(YS2/(K2-1))

YC=YS/YM

YME=YM/DS RRT (i.DO+YC, ,2)
END IF

ZALI=. O05DO, (100. DO+ZAL)

ZAX=XINV (ZAL1)

ZX=ZAX,YC/DSqRT (DBLE (K2))

PL=YM, (1.DO-ZX)

PU=-YM,(1.DO+ZX)

WRITE (6,176) YM, ZAL, PL, PU

FORMAT(///, lOX, 'ESTIMATE OF P = ',E13.5,//,

10X,F5.2,' % CONFIDENCE INTERVALS ARE',//,

IOX,'PL = ',EI3.5,SX,'PU = ',E13.5,///)

_IRITE(6,15) Y_EAN, YSTD, YMED, YCOV

IF (PLOT.ER.O.) CO TO 3456
J1=1

J2=5
WRITE(6,1003) Jl, (Y(1),I=JI, J2)

FORMAT(1X,'I = ',I5,5E13.5)
J1=J1+5

J2=J2+5
IF(J1.GT.K2) CO TO 3031
IF(J2.GT.K2) THEN
J2=K2
CO TO 3030
END IF
GO TO 3030

CONTINUE

WRITE (5,67)

FORMAT(/)
J=O
J1=1
DO 1009 I=l,K2
J=J+l

F (J)= (DBLE (I)-.5)/DBLE (K2)

IF(J.ER.5. OR.I.Eq.K2) THEN

VtRITE(6,1003) J1, (F(L),L=I,J)
J--O

J1=Jl+5
END IF

CONTINUE

CONTINUE

KI=K÷I

K2= (YC,ZAX/QAM) ,,2+1
IF(ICO.Eq.1) WRITE(6,g9) CAM,K2

FORMAT(//,IOX,'K FOR ONAMA = ',F6.2,' IS ',15)
ICO=ICO+I

IF (ICO.ER. 2.AND. K2. CT. K) CO TO 98

FORMAT (1HI, 5(/),30X, 'MONTE CARLO SOLUTION', 5 (/),lOX,

'LIMIT STATE FUNCTION : ',A,5(/),IOX,

'SAMPLE SIZE =',I7//10X, 'NL_BER OF RANDOM VARIABLES =',I3//)

FORMAT (26X,' RANDOM VARIABLES',//IOX, 'VARIABLE', 2X,

_DISTRIBLFFION', 8X, 'MEAN', 12X, 'STD DEV')

_ORMAT (/1IX, A7,5X, A7,5X, El2.5,5X, El2.5)

"ORMAT(/////IOX, 'STATISTICS OF P :'//IOX,'MEAN =',E13.5//IOX,
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8301

8888
125

÷'STD DEV =',E13.S//10X, 'MEDIAN
÷E13.5,////)

IF(ANS1.E_. 'F'.OR.ANS1.Eq.'f')
WRTTE(6,8301)
FORMAT(' DO YOU HAVE ANOTHER DATA
READ(5,8001) ANS3
IF(ANS3.E_. 'Y' .OR.ANS3.Eq.'y') GO
CONTINUE

STDP
END

SUBROUTINE SECA (EPS, A, B, IV, N, X)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(N)

X(ZV)=A
CALL LSF-_C(U, N, X)

X(IV)=B
CALL LSFMC (V, N, X)
CONTINUE
IF (DABS (X (IV) -A). CE. EPS) THEN
X (IV) :B-V* (B-A) / (V-U)
A=B
B=X (IV)
U=V
CALL LSF-_C(V, N, X)
GO TO 1
END IF
RETURN

=',E13.5,//10X,'COV

GO TO 830O

SET ?(Y/N) ',S)

TO 8304

__7

j

I This defined the performance functiol
t

tlThis subroutine determines

point at which the CDF is

evaluated for the maximum

impact variable

COMMON /TWO/PI,SPI2,PI2
IDIST=INT (DIST+. I)

GO TO (1,2,3,4,5),IDIST

1 RB=X/BETA I Evaluates
EW=RB',* ALP HA
IF (EW.GT.200.) EW=200. the CDF
EXPWEI=DEXP (-EW)
CDF=I. DO-EXPWEI

IF(ICDF.EQ.1) GO TO 10
PDF= (ALPHA/BETA) * (EW/RB) ,EXPWEI
GO TD 10

2 Z: (X-X_EAN)/XDEV
CDF=CDFNOR(Z)
IF(ICDF.Eq.1) GO TO 10
PDF=SPI2,DEXP (-Z,,2,. 5DO)/XDEV
GO TO I0

3 EE:ALPHA* (X-BETA)
IF(EE.GT.200.) EE=200.
YY:D EXP (- EE)
IF (YY. GT. 200.) YY=200.
CDF=DEXP (-YY)
IF(ICDF.Eg,.I) GO TO 10 ..
EY=EE÷YY
IF(EY.GT.200.) EY=200.
PDF=ALPHA.DEXP (-EY)
GO TO 10

4 CX21:XDEV'*2+I .DO
YMEAN=DLOQ(XMEAN)
YDEV=DSqRT (DLOG (CX21))
Z= (DLOQ (X) -YMEAN)/YDEV 365

END
SUBROUTINE CDFPDF (DIST, ALPHA, BETA, X, XMEAN, XDEV, ICDF, CDF, PDF)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)



CDF=CDFNOR(Z)
IF(ICDFoEqol) GO TO 10
EZ=- (Z**2) ,. 5DO
IF(EZ.LEo-200.) EZ=-200.
PDF--SPI2,DEXP (EZ) / (YDEV,X)
GO TO 10

TE_P= (BETA/X) ,,ALPHA

CDF=DEXP (-TEMP)

IF(ICDF.Eq.I) CO TO 10

PDF=CDF,TE_MP, ALPHA/X
RETURN

END

DOUBLE PRECISION FUNCTION XINV (Z)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

F(X,P1) =P1-CDFNOR (X)
Y=Z

IF(Z.QT.O.SDO) Y=I. DO-Z
C0=2.515517D0

C1--0.802853D0

C2--0..010328D0

D1=1.432788D0

D2=O. 18926gDO
D3--O.00130800

T= (-2.DO,DLOC (Y)) ,,. 5DO
DNL_4=CO+T, (CI+T, C2)

DNOM=I. ODO+T, (DI+T, (D2+T,D3))

X=T- (DNU_/DNOM)
IF(Z.LT.O.SDO) X=-X

A=X

B=X+. O01DO

V=F(B,Z)
U=-F(A,Z)
XX=B
CONTINUE

IF (DABS (XX-A). GE. 1. D-tO) THEN
XX=B-V, (B-A) / (V-U)
A=B

B=XX

U=-V

V=F(XX,Z)
O0 TO 1
END IF
XINV=XX

RETURN
END

DOUBLE PRECISION FUNCTION CDFNOR(Z)
; FUNCTION COMPUTES THE NORMAL CDF.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /TWO/PI,SPI2,PI2

DATA A/O. 31938153DO/, B/-O.358563782DO/, C/1. 781477937DO/,

D/-I. 821255978DO/, E/I. 33027442gD0/

F7=- (Z**2) ". SDO
CDFNOR----O.ODO

IF(EZ.LE.-2OO.ODO) GO TO I
ZX=SPI2,DEXP (EZ)

IF(DABS(Z).QT.B.DO) GO TO 2
T=I. DO/(1. DO÷(0.231641gDO,DABS (Z)) )
CDFNOR=ZX,T, (A+T, (B+T, (C+T, (D+T,E))))

OO TO 1

Z2=1. DO/(Z,Z) 366
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CDFNOR=ZX* (1. DO-Z2, (l. DO-3. DO, Z2* (1. DO-5. DO, Z2) ) )/DABS (Z)
IF (Z. GT. O. ODO) CDFNOR=I .ODO-CDFNOR
RETURN.
END
SUBROUTINE STAT (U, KI, K2, XM, STD, XMED, COV)

THIS SUBROUTINE CALCULATES THE STATISTICS (MEAN,STD DEV,MEDIAN,COV)

OF Y FUNCTION.

63

64

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION U(K2)

XK=K2-KI+I

XM--O.

DO 63 I=KI,K2

X_=XM.U (I)
CONTINUE
XM=X_/XK
STD--O.
DO 64 Z=K1,K2
STD---SI-D+(U (I) -XM) ,,.2
CONTINUE
SI'D---S'FD/(XK-1.DO)

STD=DSQRT (STD)

COV=STDIXM
X_ED=XM/DS O,RT (1. DO+COV**2)

RETURN

END
SUBROUTINE GENX (DIST, ALPHA, BETA, X,XA, XMEAN, XSTD, ISEED)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /TW0/PI,SPI2,PI2

IDIST=INT (DIST+ .I)
FOR CYBER, AA=RANFO
AA=RAN (ISLED)
GO TO (1,2,3,4,5), IDIST

X=BETA, (-DLOQ (AA)) ,, (I. DO/ALPHA)
XA=BETA, (-DLOQ (I. DO-AA) ) ,* (I. DO/ALPHA)
RETURN
BB=RAN (ISLED)

FOR CYBER, BB=RANFO

E=DS_RT (-2.DO,DLOG (AA))
X=E,DCOS (PI2,BB) ,XSTD+XMEAN

XA=-X+2. DO,XMEAN
RETURN
X=BETA-DLOG (-DLOQ (AA))/ALPHA
XA=BETA-DLOG (-DLOQ (i. DO-AA))/ALPHA
RETURN
BB=RAN (ISLED)
FOR CYBER, BB=RANFO
SDX=DS_RT(DLOQ (I.DO+XSTD,,2) )

UX=DLOG (X_EAN)
W=DSQRT (-2.DO,DLOC (AA)) ,DCOS (PI2,BB) ,SDX+UX

X=DEXP (VO ' '
XA=DEXP (-W*2. DO,I/X)

RETURN

X=BETA, (-DLOG (AA)) ,, (-I.DO/ALPHA)

XA=BETA, (-DLOG (I.DO-AA) ),, (-I.DO/ALPHA)

RETURN

END

SUBROUTINE SECAI (COY, ISIGN, ALPHA)
357
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IMPLICIT DOUBLE PRECISION (A-H,O-Z)

ISIQN : I; WEIBULL DIST.
: 2; FRECHET DIST.

F (X, COV) =- (I. DO+COV**2) ,QAMMA(X) **2,QAMMA (2..X)
IF(ISION.E{_.I) Xl:COV., (1.08)

IF (ISIQN. ER. 2) Xl=COV,w, (.677)/2.33

IF (ISIQN. EQ. 2.AND. X1. QT.. 49D0) XI=. 48999999

IF (ISION. EQ. I) FI=F (XI,COV)

IF (ISIGN. EQ. 2) FI=F (-X1, COY)

IF (DABS (F1) .LE.1.D-10) O0 TO 1
X2=Xl÷. 01DO

IF (ISIQN. E_. 1) F2=F (X2,COV)

IF (ISIQN. E_. 2) F2:F (-X2, COV)
XX=X2

CONTINUE

IF (DABS (XX-X1). GE. i.D-g) THEN
XX=X2-F2, (X2-X1) / (F2-F1) -
XI=X2
X2=XX

FI=F2

IF (ISION. E_. I) F2=F (XX, COY)
IF (ISION. Eq. 2) F2=F (-XX, COV)
QO TO 10

END IF
XI=XX

ALPHA:I. DO/X1
RETURN
END

SUBROUTINE WEI (XMEAN, XDEV, ALPHA, BETA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COV=XDEV/XMEAN
CALL SECA1 (COV, 1, ALPHA)
ALI=I .DO/ALPHA
BETA=Y3AEAN/QAMMA(ALl)
RETURN
END

SUBROUTINE FRE (XMEAN, XDEV, ALPHA, BETA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COV=XDEV/)OAEAN
CALL SECA1 (COV, 2,ALPHA)
ALl=l. DO/ALPHA
BETA:X}AEAN/QAMMA (-ALl)
RETURN
END

SUBROUTINE EVD (XMEAN, STD ,ALPHA, BETA, PI)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
ALPHA=PI/(STD,DSqRT (6. DO) )
BETA=X)AEAN-. 577215664901S3/ALPHA
RETURN
END

DOUBLE PRECISION FUNCTION QA_MA(YI)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /TWO/PI, SPI2,PI2
X=YI+I. D+O '

Z=X

IF(X.GE.e.OD+O) QO TO 4S6

N=INT(X)
Z=(6.0D+O)-N.X

Y=I .D+O/Z,.2

ALO= (Z-. 5D+O) .DLOQ (Z) ÷. SD+O.DLOQ (PI2) -
368
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3
457

Z- (1.D+O/(12. D+O*Z) )w,(((Y/O. 14D+3-1. D+O/O. 105D+3) *Y+

1.D+O/. 3D+2) ,Y-I. D+O)

IF(X.OE.6.D+O) O0 TO 457
ITE=6-N
DO 3 J=I,ITE
A=X+J-I. D+O
ALQ:ALQ-DLOC (A)

CONTINUE

GAMMA=DEXP (ALG)

RETURN

END

Note: The performance function must be introduced in subroutine LSFMC.

For an example of subroutine LSFMC, see the last page of Appendix B.
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Appendix E

Program SELSA_M" The Mean Value Method for Evaluating a Multiple Integral,

and Enhancement by Stratified Sampling

How the Data is Input

i. NK, NT, N

NK = 0; Hasofer-Lind design point for reference

NK = I; Rackwitz-Fiessler design point for reference

NT = Total number of samples

N = Total number of random variables

2. ISTRIP

ISTRIP = Total number of STRIPS (or boxes) for stratified sampling;

ISTRIP = I gives you the "mean value" method

3. BOX (!), IBOX (I) This is repeated for each box.

BOX (I) = ith strip length from the reference point (design point) in

standard deviations.

IBOX (I) = trial points in ith strip

4. V_R (I); this along with the next line will be repeated for each random

variable

VAR (I) = ith random variable name

5. IDIST (I) X_IEAN (!), STD (I); this corresponds to VAR (I)

IDIST (I) = ith random variable distribution

1 = WEiBULL

2 = NORMAL

3 = EVD

4 = LOGNORMAL

5 = FRECHET
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o

.

XMEAN (I) = ith random variable mean value

STD (2) = ith random variable standard deviation

*If nognormal, median and COV instead of mean and std.

20 = constant in performance function; this allows the user to make an

easy change in the performance function when constructing a CDF

The user should supply the LSFRA and G function in the last section of

program (see example)
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PROGRAM SELSAM (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION XMEAN(20), STD (20), IDIST (20), XR (20), AL (20), BE (20)
DIMENSION X (20), BOX(20), IBOX (20), IDIV (20), AREA (20), ITEST (20)
DIMENSION IDIVl (20),TMEAN (20),TSTD (20), Z (20), UX (20), TCOV (20)
CHARACTER,7 VAR (20) ,AA
COMMON/TWO/ PI,PI2,SPI2

COMMON /RAC/ NK
CALL RANSET (0)
PI=4. DO,DATAN (1. DO)
PI2=PI+PI
SPI2=I. DO/DSqRT (eI2)

F_PSI = STOP CRITERION IN RACA

EPSI=I.D-4

NK = O; H-L
NK = 1; R-F
NT;- NUMBER OF TRIALS
N; NUMBER OF RANDOM VARIABLES

READ (5,,) NK, NT,N

ISTRIP; NUMBER OF STRIPS

READ(5,*) ISTRIP

DO 300 I=I,ISTRIP

BOX; DISTANCE FROM ORIQIN FOR i-TH STRIP (MULTIPLIED BY SIGMA)
IBOX; NUMBER OF POINTS IN i-TH BOX

READ(5, *) BOX(I), IBOX (I)

CONTINUE

CALCULATE EACH STRIP AREA

DO 150 I=I,ISTRIP-1
AREA (I) = (2. DO,BOX (I)) **N- (2. DO,BOX (1+I)) • ,N
CONTINUE
AREA (ISTRIP) = (2.DO,BOX (ISTRIP)) ,,N

WRITE(6,769)

DO 1 I=I,N

AL(1)=O.DO

BE(I) =0 .DO

ENTER VARIABLE NAME

READ(5,' (A) ') VAR(1)

ENTER DISTRIBUTION, MEAN, AND STANDARD DEVIATION
IF LN, USE MEDIAN AND COV

READ(5, .) IDIST(I) ,XMEAN (I), STD (I)

IF (IDIST (I). Eq. 1)
IF (IDIST(1) .Eq.2)

AA='WEIBULL'

AA='NORMAL'
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103

105

17

1

7

665

IF (IDIST(I). EQ. 3) AA=' EVD'

IF(IDIST(I).Eq 4) AA:'LOG No'

IF (IDIST (I).Eqo 5) AA=' FRECHET'
GO TO (i01,17,108,17,I05) ,IDIST(I)
CALL WEI (XMEAN(I), STD (I), AL (I), BE(I))
GO TO 17
CALL EVD (XMEAN (I), STD (I), AL (I), BE(I), PI)
QO TO 17
CALL FRE(Y_EAN (I), STD (I), AL (I), BE (I))
CONTINUE
WRITE (6,768) VAR (I), AA,)(MEAN (I), STD (I)
CONTINUE
WRITE (6,767)
WRITE(6,766) NT
WRITE(6,7661) (IBOX (1),I=I,ISTRIP)
WRITE (6,7662) (BOX (I), I=l, ISTRIP)
DO 7 I=I,N

IF(IDIST(I) .E_.4) THEN
1-MEAN(1) =XUEAN (I) ,DS_RT (I. DO+STD (I) **2)
TSTD (I)=TI_EAN(I),STD (I)

TCOV (I)--STD(I)

ELSE

TI_EAN (I) =XMEAN (I)
TSTD (I) =STD (I)
TCOV(I) =TMEAN (I)/TSTD (I)

END IF

CONTINUE

DO 665 KI=I,N

IF (IDIST (KI). Eq. 4) THEN

T_EAN (Kl)=DLOQ (TMEAN (KI))
TSTD (K1)=DSqRT (DLOG (I.DO+TCOV (El)..2) )

END IF

CONTINUE

ZO = CONSTANT IN LSFRA

666
333

READ(S,*) ZO

CALL RACA (Z, N, XR, EPSI, TMEAN, IDIST, TSTD, TCOV, AL, BE, BET, ZO)

WRITE (6,61)
WRITE(6,63) (XR (KKJ), KKJ=I, N)
DO 666 KI=I,N
IF(IDIST(K1).EQ.4) THEN
T_EAN (KI) =DEXP (]-MEAN (KI) +TSTD (K1) ,,2-. 5)
TSTD (K1)=T_EAN (K1),TCOV (K1)
END IF

CONTINUE

SU_P---O.DO
SL_S=O. DO
mITE (6,770)
DO I00 IJ=I,NT
CALL SECOND(TX1)
SL_---O.DO
IDlVl (I) =IBOX (I)
DO 15 L=I,ISTRIP

IDIV (L) =0
SL,_X=O. DO
LEFT=O
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TOTAL LENGTH OF L-TH STRIP

DX=2. DO,BOX (L)

DO 3 J=I,IDIVI(L)

DO 2 I=I,N

ITEST (I):0

XMIN=XR (I)-BOX(L)

U=RANF 0 ,DX+XMIN

X (I) --U,TSTD (I) +DAEAN (I)
IF(L.Eq.ISTRIP) GO TO 2
IF (U. QE. XR (I) -BOX (L+I). AND. U. LE. XR (I) +BOX (L+I))
CONTINUE
IF(L.E_. ISTRIP) GO TO 230
ITE=O
DO 21 I=I,N
ITE=ITE+ITEST (I)
CONTINUE
IF (ITE. Eq. N) THEN

LEFT:LEFT+ I
ELSE

IOIV (L) =IDIV (L) +I
END IF

IF(ITE.E_.N) GO TO 3

IF(G(X).OT.O.DO) GO TO 3

ITEST (I) =1

SL_X = SL_ OF f(xl,x2,...,xn)

SUMI=I.DO

DO 5 I=I,N

SI_I--SUMI • F (IDIST (I), YJqEAN (I), STD(I), X (I), AL (I), BE (I))
CONTINUE
SL_X--SL_X+SL_I

CONTINUE

SL,_2 : PRODUCT OF EACH STD

SL_2=1. DO

DO 6 I=I,N

SUM2:SUBI2,TSTD (I)
CONTINUE

IF (L.EQ. ISTRIP) IDIV (L):IDIVI (L)

SUMX=SUMX,AREA (L),SUM2/IDIV (L)
SU_=SI._+SUMX
IDIVI (k+l)=IBOX (L+I) +LEFT
CONTINUE

BETA=-XINV (SLY)
SL_P--SUMP+SUM

SU_S--SL,_S+SLY* * 2
CALL SECONDCI-X2)
TIME:TX2-TXI

WRITE(6,771) SUI_,BETA,TIME
CONTINUE

SL_S=DS qRT ((SU_S- SL_P ••2/NT) / (NT-I.DO) )

SL_P--SUI_P/NT

WRITE(6,772) SUI_P

WRITE(6,773) SU_S
FORMAT(/,IX, 'INITIAL STARTING POINT (REDUCED VARIATES)')
FORMAT(/,IX, 'NEW STARTING POINT (REDUCED VARIATES) ')
FORMAT(5 (1X, F6.3))
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764
765
766
7662
7661
767
768
769
770
771
772
773

FORMAT(1X,'SUM(',I2,') = ',1PE12.4)
') = 'I5)FORMAT(lX, 'GAMMA(' ,I2,

FORMAT(IX, 'K = ',15)
FORMAT(/,1X, 'STRIP (SIGMA) =',5(IX,F6.2))
FORMAT(/, 1X, 'SAMPLE (POINTS) =', 5 (1X, 15) )
FORMAT(//)
FORMAT(2X, A7,2X, A7,1X, 1PE12.4,1PE12.4,/)
FORMAT(//,1X,'VARIABLE',IX,' DIST. ',6X,'MEAN',8X,'STD.
FORMAT(//,1X, 'ESTIMATE OF I',4X, 'BETA',4X, 'CPU SEC',/)
FORMAT(2X, 1PE12.4,3X, OPF6.3,2X, OPF6.2,/)
FORMAT(1X,'AVG. OF ESTIMATION = ',1PE12.4,/)
FORMAT(IX, 'STANDARD DEVIATION = ',1PE12.4,/)
STOP
END

DEV',/)

C

4

5

DOUBLE PRECISION FUNCTION F(IDIST,XMEAN,XDEV,X,ALPHA,BETA)

CACULATE PDF OF EACH VARIABLE

2

3

IMPLICIT DOUBLE PRECISION

COMMON /TWO/ PI,PI2,SPI2
GO TO (1,2,3,4,5),IDIST
IF(X.LE.1.D-IO) THEN
F=O. DO
GO TO 10
END IF

RB=X/BETA
E-W=RB,,ALPHA

IF (EW. QT. 200. ) EW=200.
EXPWEI:DEXP (-EW)
F= (ALPHA/BETA), (EW/RB), EXPWEI
GO TO 10

Z= (X-XMEAN)/XDEV
F=SPI2,DEXP (-Z,,2,. SDO)/XDEV
QO TO 10

EE=ALPHA, (X-BETA)

IF (EE.OT. 200.) EE=200.
YY=DEXP (-EE)

IF (YY.OT. 200.) YY=200.
EY=EE+YY

IF (EY.OT. 200.) EY=200.

F=ALPHA,DEXP (-EY)
GO TO 10
IF(X.LE.O.DO) THEN
F=O. DO
GO TO 10

END IF
CX21:XDEV**2+1. DO
YMEAN=DLOO()(MEAN)
YDEV=DSQRT(DLOQ (CX21))
Z= (DLOO (X)-YMEAN)/YDEV

EZ=- (Z** 2) *. SDO
IF (EZ. LE. -200.) EZ=-200.
F=SPI2*DEXP (EZ) / (YDEV*X)
GO TO 10
IF(X.LE.O.DO) THEN
F=O. DO
GO TO 10

(A-H, O-Z)
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END IF

TI_P= (BETA/X) ,,ALPHA
IF(TEMP.GE.200.) TE_P=200.
CDF=DEXP (-TEMP)
F=CDF,TF__P,ALPHA/X

RETURN
END

DOUBLE PRECISION FUNCTION CDFNOR(Z)
THIS FUNCTION COMPUTES THE NORMAL CDF.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /TWO/ PI,PI2,SPI2

DATA A/O. 31938153D0/, B/-O. 356563782D0/, C/1.781477937D0/,
D/-1.821255978D0/, E/1.330274429D0/
EZ=- (Z**2) • .SDO
CDFNOR=O. ODO
IF(EZ.LE.-200.0DO) CO TO 1
ZX--SPI2,DEXP (EZ)
IF (DABS(Z).QT.6.DO) QO TO 2
T=I. DO/(1. DO+ (0.2316419DO,DABS (Z)))
CDFNOR:ZX,T, (A+T, (B+T, (C+T, (D+T,E))))
OO TO 1

Z2=1. DO/(Z,Z)
CDFNOR:ZX, (1.DO-Z2, (I.DO-3. DO, Z2, (I.DO-5. DO, Z2) ))/DABS (Z)

IF(Z.QT.O.ODO) CDFNOR=I .ODO-CDFNOR
RETURN

END

DOUBLE PRECISION FUNCTION XINV (Z)

INVERSE NORMAL CDF

IMPLICIT DOUBLE PRECISION

F(X,Pl) =PI-CDFNOR (X)
Y=Z

IF (Z Y=I. DO-Z
C0=-2

Cl--O

C2--0

DI=I

D2--O

(A-H, O-Z)

.QT.O.SDO)

.515517D0

.802853D0

.010328D0

.432788D0

.189269DO
D3=O.OOI308DO
T=(-2.DO,DLOQ(Y)),,.5DO

DNL_=CO+T,(CI+T,C2)

DNOM=I.0DO÷T,(DI+T,(D2+T,D3))

X=T-(DNL_/DNOM)
IF(Z.LT.O.5DO) X=-X
XI=X

FI=F (X1 ,Z)
X2=XI+.OOIDO

F2=F(X2,Z)
XX=X2
CONTINUE
IF(DABS(XX-X1).QE.1.D-IO) THEN
XX=X2-F2, (X2-X1) / (F2-F1)
XI=X2

X2=XX
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FI=F2

F2=F(XX,Z)
O0 TO 10

END IF

XINV=XX

END

C

7

I0

SUBROUTINE SECT1 (COV, ISIGN, ALPHA)

CALCULATE ALPHA, AND BETA IN WEIBULL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /TWO/ PI,PI2,SPI2

OR FRECHET

ISION = 1; WEIBULL DIST.

= 2; FRECHET DIST.

F (X,COV) :- (1.DO+COV**2) •OAMMA (X)**2+QAMMA (2..X)

IF (ISIGN. EQ..1) Xl=COV,, (1.08)
IF (ISION. EQ. 2) Xl:COV** (. 677)/2.33
IF(ISION.Eq.2.AND.Xl.0T.-49DO) X1=.48999999

FI=F (X1, COV)
FI=F (-Xl, COV)
•1.D-10) CO TO 1

IF(ISION.E_.I)
IF (ISIGN.Eq.2)
IF (DABS (F1). LE
X2=XI+.OIDO
IF(ISION.E_.I)
IF (ISIGN. Eq. 2)
XX=X2
CONTINUE

F2=F (X2,COV)

F2=F (-X2, COV)

IF (DABS (XX-X1). CE. 1.D- 9) THEN

XX=X2-F2, (X2-X1) / (F2-F1)
XI=X2

X2=XX

FI=F2

IF(ISION .E_. I) F2=F (XX, COY)
IF (ISIQN. E_. 2) F2=F (-XX, COY)
O0 TO 10

END IF

X1-XX

ALPHA=I. DO/X1
RETURN

END

C

SUBROUTINE WEI(XMEAN,XDE-V,ALPHA,BE-TA)

CALCULATE PARAMETERS (ALPHA AND BETA).

IMPLICIT DOUBLE PRECISION

CBY=XDEV/Y_EAN

CALL SECTI (COV, I,ALPHA)

ALI=I. DO/ALPHA

BETA:XMEAN/OAW_[A (ALl)
RETURN

END

(A-H,O-Z)

SUBROUTINE FRE()(MEAN, XDEV, ALPHA, BETA)
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CALCULATE PARAMETERS (ALPHA AND BETA)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COV=XDEV/XMEAN
CALL SECT1 (COV, 2, ALPHA)
ALI=I .DO/ALPHA
BETA=XMEAN/GAMMA (-ALl)
RETURN
END

SUBROUTINE EVD (XMEAN, STD, ALPHA, BETA, PI)

CALCULATE PARAMETERS (ALPHA AND BETA)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
ALPHA=PI /(STD,DSqRT (6. DO) )
BETA=TJAEAN-. 57721566490153/ALPHA
RETURN
END-

DOUBLE PRECISION FUNCTION GAMMA(Y1)

GAMMA FUNCTION

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /TWO/ PI,PI2,SPI2
X=YI-,.1.D+O

Z=X

IF(X.QE.6.OD+O) QO TO 456
N=INT(X)
Z=(6. OD+O) -N+X
Y=I .D+O/Z**2
ALQ= (Z-. 5D+0) .DLOQ (Z) +. 5D+O.DLOQ (PI2) -
Z- (1.D+OI (12.D+O,Z) )•(((YIO. 14D+3-1. D+OIO. 105D+3) ,Y+

I.D+O/. 30+2) .Y-1. D+O)

IF(X.GE.6.D+O) QO TO 457
ITE=6-N

DO 3 J=I,ITE
A=X+J-1 .D+O

ALQ=ALQ-DLOC (A)
CONTINUE

GAMMA=DEXP(ALQ)
RE-TURN
END

SUBROUTINE RACA (Z,N,XR, EPS, X_EAN, IDIST, XDEV, XCOV, AL, BE, BETA, ZO)

SUBROUTINE FOR H-L OR R-F

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X (20), XR (20), BUFFER (20), D (20),)(MEAN (20), XDEV (20),
IDIST (20), XNMEAN(20), XNDEV (20), AL (20), BE (20), Z (20), XCOV(20)
COMMON/DIREC/ DQ(20)
COMMON/RACAXX/ Z01
COMMON/RAC/ LL
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C,@

C

C
C*
C*
C

17

$
13

C
C,
C

21

lg

OPTIMIZATION ROUTINE BEGINS HERE
ZOl=ZO

KK=O
CALL HAZL (Z, N, F, EPS, D, XR, XMEAN, XDEV, IDIST, X, BETA, KK)
IF (LL. Eq.O) RETURN

THIS LOOP CALCULATES THE EQUIVALENT NORMAL DISTRIBUTION
FOR EACH DESIGN VARIABLE.

KK=KK+I

DO 13 J=I,N
CALL FIND (AL (J), BE (J), IDIST (J), XMEAN(J), XDEV (a), X (J),
XNMEAN(J), XNDEV(J))
CONTINUE
ZBETA=BETA
CALL HAZL(Z,N,F,EPS,D,XR,XNMEAN,XNDEV,IDIST,X,BETA,KK)

MAX OF 35 ITERATIONS FOR EQUIVALENT NORMAL SEARCH ALGORITHM

IF(KK.EQ.3S) GO TO 19
IF (ABS (BETA-ZBETA). LE. O. 0001)
GO TO 17
RETURN
END

GO TO lg

C
C,
C

1
C
C,
C

÷;

HASOFER-LIND SAFETY INDEX CALCULATIONS

SUBROUTINE HAZL (Z, N, F,T, D, XR, XMEAN, XDEV, IDIST, X, BETA, KK)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X (20), XR (20), BUFFER (20), D (20), XMEAN(20), XDEV (20)
IDIST (20), Z (20)

IF(KK.Eq. I0) T--O.1.T
IF(KK.Eq.20) T=O. 1,T

IF(KK.EQ.25) T--O.1.T

IF(KK.Eq.34) T--O.I.T
ININTIAL GUESS XR

EPSI=I. E-4

IF(KK.Eq.O) CALL GFN(EPSI,IDIST,XWEAN,XDEV,Z,N,XR,O)

DO I I=2,N

D (I)---0.1
CONTINUE

OPTIMIZATION ROUTINE BEGINS HERE

CALL FN(Z,N,F,X,XR,XMEAN,XDEV,IDIST)
BETA=F
DO 3 NI=2,N

3 BUFFER(NI) =XR (N1)
15 DO 4 NI=2,N

DO 5 N4=2,3
XR (NI) =XR (NI) +D (N1) • (-I.) ..N4
CALL FN(Z,N,F,X,XR,XMEAN,XDEV,IDIST)
IF(F.GE.BETA) GO TO 45
BUFFER(N1) =XR (NI)
M1--O

25 BETA=F
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XR (N1):XR (N1) +D (N1) * (-1.) .,N4
CALL FN (Z, N, F, X, XR, )(MEAN, XDEV, IDIST)
IF(F.LT.BETA) QO TO 35
XR (NI) =BUFFER (NI)
QO TO 55
MI=_I+I

BUFFER (N1) =XR (N1)
IF(MI.LT.3) OO TO 25
DO 6 N2=2,N
D(N2) =D (N2) ,2.
O0 TO 55
XR (NI)=BUFFER (NI)
CONTINUE
CONTINUE
DO 7 NI=2,N
D (N1)=D (N1)..5
CONTINUE

DO 8 I=2,N

IF(D(1).OE.T) GO TO IS
CONTINUE
RETURN
END

SUBROUTINE FN (Z,N, F,X,XR, XMEAN, XDEV, IDIST)

OPTIMIZATION SUBROUTINE

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION X (20), XR (20),)(MEAN(20),XDEV (20),IDIST (20), Z (20)

COMMON /RACAXX/ Z01
SUM=O.0

COMPUTATION OF BASIC VARIABLES FROM QUESS OF REDUCED VARIABLES

DO 1 I=2,N

X (I) =XDEV (I) .XR (I) .XMEAN (I)
CONTINUE
DO 2 I=2,N
IF(IDIST(I) .NE.4)QO TO 2

RECOMPUTATION BACK TO BASIC FORM FOR LOG TRANSFORMED VARIABLES

x (i) =DEXP(X(Z))
CONTINUE
CALL LSFRA(N,X,Z,Z01)

COMPUTATION OF REDUCED VALUE

IF SPECIFIED

OF DEPENDENT VARIABLE. TRANSFORM IS MADE

IF(IDIST(1) .NE.4)QO TO 15
IF(X(1) .LE. 1.D-20) X (1)=1.D-20
XR(1) = (DLOO (X (1)) -)(MEAN (1))/XDEV (1)
QO TO 25

XR (I)= (X(1)-)(MEAN(i))/XDEV (i)
CONTINUE

CALCULATION OF BETA, THE SAFETY INDEX
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3

DO 3 I=I,N

IF(XR(I) .GT.27.) XR (I)=27.
IF(XR(I).LT.-27.) XR(I)=-27.
SUM--SUM+XR(I) ,,2
CONTINUE
F=DSqRT (SLY)
RETURN
END

4

C
2O

SUBROUTINE FIND (ALPHA, BETA, IDIST, XMEAN, XDEV, X, XNMEAN,XNDEV)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /TWO/ PI,PI2,SPI2
QO TO (1,4,3,4,S),IDIST

RB=X/BETA
EW=RB, ,ALPHA
IF (EW.GT.200.) EW=200.
EXPWEI=DEXP (-EW)
CDF=I. DO-EXPWEI
PDF= (ALPHA/BETA) • (EW/RB) • EXPWEI
QO TO 20

3 EE=ALPHA* (X-BETA)
IF(EE.QT.200.) EE=200.
YY=DEXP (-EE)
IF (YY. GT. 200.) YY=200.
CDF=DEXP(-YY)
EY=EE÷YY
IF (EY. QT. 200.) EY=200.
PDF=ALPHA,DEXP (-E¥)
QO TO 20
XNMEAN=XMEAN
XNDEV=XDEV
CO TO I0

TEMP= (BETA/X) ..ALPHA

IF (TEMP.OT. 200.) TEMP=200.
CDF=DEXP (-T_P)
PDF=CDF.TEMP*ALPHA/X

R-F TRANSFORMATION

PDFNOR=SPI2* DEXP (-(XINV (CDF) *.2) ..SEO)

XNDEV=PDFNOR/PDF
XNMEAN=X-XINV (CDF) ,XNDEV

10 RETURN
END

SUBROUTINE QFN (EPSII,IDI,YJA,ST, Z,N,XR,KK)

FIRST INITIAL OUESS FOR XR

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION 7J4(20),SID (20), IDI (20) ,XR (20), Z (20),DIR (20)

DIMENSION ST(20),XT(20)
COMMON /DIREC/ 00(20)
DO I0 I:I,N
XT (I) =XM (I)
STD (I)--ST (I)
IF(KK.EQ.O.AND.IDI(I).EQ.4) THEN
XT (I)=DEXP (XM (I)+.5.ST (I)-.2)

TEMP=DEXP (ST (I) ..2) 38]_



STD (I)=DSqRT (DEXP (2.,XM (I)),TB-MP•CTF.MP-1.))
GO TO I0
END IF
CONTINUE

G8AR=C (XT)
DO 2 I=I,N
EPSI=EPSII

IF(STD (I) .LT.Io) FPSI=STD (I)•i.D-4
XT(I)=XT (I)÷EPSI
OXT=G(XT)
DG (I)=(QXT-G8AR)/EPSI,STD (I)

XT(I)=XT (I)-EPSI
CONTINUE
SUM--O.0
DO 3 i=I,N
SL --SL ÷DC(I).,2
CONTINUE
DSL_=DSRRT (SLY)

DO 5 I=I,N
OIR(I)=DO (I)/DSU_
CONTINUE

BETA=GBAR/DSU_
DO 6 I=I,N

XR (I) =-DIR (I) .BETA
CONTINUE
RETURN
END

USER SUPLL!ED SUBROUTINES

SUBROUTINE LSFRA (N,X, Z, ZO)

SUBROUTINE FOR LIMIT STATE FdNCTION

REQUIRED BY H-L OR R-F
USE Z(20),ZO FOR CONSTANT VALUES

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION X(N),Z(20)

LIMIT STATE FUNCTIOn (X(1)=f (X(2),X (3),. .,X(N))

X(1)=DSQ.RT(300. ,X(2) ,..2+1.92,×(3) ,.2) _.
RETURN
END

DOUBLE PRECISION FUNCTION G(X)

FUNCTION FOR Monte Carlo

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /TWO/ PI,PI2,SPI2
DIMENSION X(20)

/
/

.I

Response functions for [he

examples given

PERFORMANCE FUNCTION (LESS THAN OR EQAUL TO ZERO TYPE)

C=X (1)-DSqRT (300.,X (2),,2,1.92,X (3),,2) <

RETURN 382
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Appendix F. Listing of the Harbitz Program

This program was developed to run on the V_X and the CYBER 175. The

listing fiven here is for the CYBER version. The VAX Version runs in double

precision. It is not interactive.

The performance function g(_) must be introduced in two subroutines.

I) Subroutine HARBIFN. Enter the function g(_) directly. See the

listing for an example.

2) Subroutine LSFFPI. Here the limit state g(_) = 0 is entered such

that one variable is a function of the others. See the listing for

an example.

The reason that g_) must be entered in two places in a different format

has to do with the calcuiational procedure. The Rackwitz-Fiessler algorithm

to perform the first order reliability enelysis uses an optimization routine

and required that the limit state be entered. A significant improvement to

the program would result if a R-F routine requiring g(_) as input be

implimented.
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Data Input File

Card 1 Problem identification in "A" format

Card 2 EPS, K, N, Z0

EPS; The stop criterion for FPI

K; number of random variables
i

N; number of trials

Z0; constant used for constructing cdf, e.g., p = P[h(_) - Z0]

Define g(_) = h(_) - Z0

It is most convenient to change Z0 through the data than it is

a Fortran statement.

Cards 3 and 4 are repeated for each variable.

Card 3 Variable name in "Z" format

Card 4 DIST(I), XMEAN(I), STD(I)

DIST(1) = i WEIBb_L

2 NORMAL

3 EVD

4 LOGNORMAL

5 FRECHET

X}IEA/q(I) = mean value; median if !ognorma!

STD(I) = standard deviation; COV if lognormal
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PROGRA_ KARBITZ (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT)

INPLIOIT REAL (A-H,O-Z)
CHARACTER*80 ANS

CKARACTER VNAKB (20),5, VDIST (20),7

UP TO 20 RANDO_ VARIABLES

DIKENSIONX(20),XRAN(20), ZX(20),XR(20)
DIKENSIONDIST(20), XKEAN(20), XCOV(20), STD(20), AL(20), BE(20)
CO_ON /TWO/PI,PI2,SPI2
CO_ON/_A/

EQ. 22 IN HARBITZ'S PAPER i

C (U,XNU, ALPHA) = (-LOG (U))** ()2{U,.5EO-I. EO) ,U** (.5SO,ALPHA- i.EO)

START PROGRA_

ISEED=TT_E, (DUKIff) -_Jr

CALL RANSET (ISEED)

CACULATE CONSTANT PARAKETERS

PI--4.EO.ATAN (I.EO)
PI2=PI+PI

SPI2=I. EO/SQRT (el2)

Note that the random process

is initiated using the clock.

Program HARBiTZ Monte Carlo using

the Harbitz method. This version

runs on the CYBER. The V._X ver-

sion is in double precision.

READ INPUT DATA

,(,) ') _sREiD(S,

ANS IS USED FOR THE PROBLE_ IDENTIFICATION

READ (5, ,) EPS,K,N,ZO

EPS IS USED IN FPI FOR STOP CRITERION

ISEED IS INITIAL SEED NUMBER FOR EANDOM NUEBER GENERATION
K IS NIP/BER OF RANDOM VARIABLES

N IS NIP/BER OF TRIALS

DO 610 I=I,K

DIST(1) = i. ; WEIBULL
= 2. ; NORKAL

=3.; EVD
= 4. ; LOGNOREAL

= S.; FRECKET

Rm.D(S,'(A) ') _(I)
READ (5,,) DIST (I) ,XKEAN (I),STD (I)

IF (DIST(1) .EQ.i.) YDIST (1)='WEIBULL'

IF (DIST (I).EQ. 2.) VDIST (I)=' NORNAL '

IF (DIST (I).EQ. 3.) VDIST (I)='EYD'

IF (DIST (I) .EQ.4. ) VDIST (I)='LOG'

IF (DIST (I).EQ. 5. ) YDIST (I)='FRECHET '

IF LOGNORMAL, USE KEDIAN, AND COY

GO TO (601,600,603,604,605), INT(DIST(I)+.IEO)
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,_01

_03

6O4

"00

610
J
C
]

J
C

C

C

C

C

C

r_

%J

C

220

C

C

C

C

C

CALCULATE DISTRIBUTION PARAKETERS

CALL WEI (XI_ (I), STD (I), AL (I), BE (I))

GO TO 6OO

CALL EYD (XIKEAN(I),STD (I),AL (I),BE (I),PI)
GO TO 600
X_ (I)=X_ (I)•SQRT (i.EO+STD (I), ,2)

STD (I)=XKEA_ (I) ,STD (I)
GO TO 6OO
CALL FRE(X_(I) ,STD (I) ,AL(I) ,BE(I))
CONTINUE

XCOV (I)=STD (I)/X_ (I)
CONTINUE

XNU IS DEGREES OF FREEDOM IN C_I-SQUARED DISTRIBUTION

XNU=REAL (K)

IR=O FOR USING EQ. 25 IN EARBITZ'S PAPER

I_R=I FOR USING EQ. 26 IN HARBITZ'S PAPER

IR--O

START TO CKECK OPU TIME CONSUMED

CALL SECOND(TXl)

CALL XFPI TO CALCULATE BETA

ZX, AND ZO CAN BE USED FOR CONSTANTS

CALL XFPI (ZX,K, XR, EPS, XKE_, DIST, STD, XCOV, AL, BE, BETA, ZO)

IF K=2, THEN ALPHA IS ALWAYS 2.0, AND AR IS 1.0

IF (K.EQ. 2) THEN
AK=I .EO

ALPHA=2. EO

GO TO 230

END IF

STARTING KIN. ALPHA = 2.0

STARTING KAX. ALPHA = I0.

ALKINI=2. EO

ALKAXI=IO. EO

IT IS USED FOR MAX.

IT=O

CONTINUE

ALKIN=ALKINI

ALKAX=ALKIXI

ALPHA IS C.T. i0.0

MORE ACCUEACY IS NEEDED, INCREASE ITERATION NUMBER (e.g.,

DO 200 I=i,3

FIND ALPHA FOR MAX. AREA RATIO, AR
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CALL KATEST (ALKIN, ALKAX, BETA, K, ALKI, ALKA, ALPHA, AR)

KAX. ALPHA GOES TO TEE RIGHT HAND SIDE (G.T. 20., OR 30.)

IF(ALPHA.EQ.AL  Xl)TEEN
IT=IT+I

KAX. ALPHA IS SET TO BE 50.

IF(IT.EQ.6) GO TO 230
ALKINI =REAL (IT) *I0. EO

ALKAXI=REAL (IT+l) *i0 .EO

GO TG 220

END IF

ALKIN=AL_I

AL_tAX=ALKA

CONTIN_

CONTIN[_

EQI21 IN KAIBITZ'S PAPER

BETA3=BETA+ 3.EO

UI=EXP (-(BETA3) **2/ALPHA)

U2=EXP (-BETA* •2/ALPHA)

CALCULATE CONSTANT PARANETERS FIRST

UI2=U2-UI

NU_ IS TOTAL NUKBER OF G<O
NR IS TOTAL NUKBER OF RADIUS CALCULATION (EQ. 24, IND 25)

EQ.23 IN HARBITZ'S PAPER

IF (Xh_J.EQ.2 .EO) THEN

ARG IS Umzx

ARC= (UI+U2) ,.5EO
GARG=I. EO

ELSE

_RG:EXP (- (X_U-2 .EO) /(ALPHA-2 .EO))

GARG=G (ARG,X]_IJ, ALPHA)
END IF

FIND Gmzx

IF (ARG. GE. UI. AND. ARG. LE. U2) TEEN

Ummx IS BETWEEN UI AND U2

GX=GARG

IGKAX--O

ELSE

Umax IS U1 OR U2
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GUI=G(UI, XNU,ALPHA)
GU2=G(U2,XNU,ALPHA)
GX=   XI(Gin,CU2)
IGMAX=I

END IF

DO i I=I,N

SAMPLE UNTIL G<g(U)

C

C

C

i(3<)

110

C

C

C

C

C

C

UJ=RA_NF ()*UI2+UI

GJ=RA/_ 0 *GX

UJ IS SAKPLED BETWEEN

GJ IS SAMPLED BETWEEN

UI AND U2

o g(Um x)

NR=NR+I

IF (CJ.GE. G (UJ,XNU, ALPHA) )

IF (IR.EQ.O) TEEN

GO TO I0

EQ. 2S IN KARBITZ'S PAPER

RJ=SQRT (-ALPIIA,LOG (UJ))
ELSE

EQ. 26 IN HARBITZ'S PAPER

LI=MOD (K,2)

K2=K/2

IF (LI.EQ. i) K2= (K-l)/2
CONTINUE

NR=NR+I
SUKR= i.EO

DO ii0 IXY=I,K2

SUMR=SUM:R,RANF()
CONTINUE

IF(LI.EQ.O) THEN

EVEN NUMBER .kNDO_ VARIABLES (EQ. 26 A)

RJ=-2. EO*LOG (SUKR)

FISE

ODD NUMBER RANDOM VARIABLES (EQ. 26b)

Xl=-2. EO,LOG (RANF ())

X2=RMCF () ,PI2
XS=SQRT (X1) .COS (X2)
RJ=-2. EO,LOG (SU_) +X3,,2

END IF
END IF
SUM=O. EO

GENERATE STANDARD NOREAL VARIATES

DO 2 J=I,K

XI=-2.EO.LOG (RANF O)

X2=RANF 0 .PI2

X (J)=SQRT (X1) .COS (X2) 388
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SUH=SUH+X(J) *'2
CONTINUE
SUH=SQRT(SUH)

NO_IZATION OFNORKAL¥ARIATES(EQ. 27 IN HARBITZ'S PAPER)

DO 3 J=I,K

X (J)=X(J)/SUH,RJ
CONTINUE

INVERSE TRANSFORNATION FROM NORNAL YARIATE

DO 500 J=I,K
GO TO (501,502,503,504,505), INT(DIST(J)+.IEO)

WEIBULL DISTRIBUTION

XRAN (J)=BE (J)* (-LOG (I.EO-CDFNOR (X (J))))** (i.EO/AL (J))

GO.TO 500

NOILV#_ DISTRIBUTION

(J)=STD(J),X(J)+nm (J)
GO TO 500

EVD

XRA_N(J)=BE (J) -LOG (-LOG (CDFNOR (X(J)) ))/AL (J)

GO TO 500

LOGNOR3AAL DISTRIBUTION

CX2=I. EO+XCOV (J) **2
XNEANJ=LOG (XIfEAN(J)/SQRT (CX2))

STDJ=SQRT (LOG (6012))

XRAN (J)=EXP (STDJ,X (J) +XNEANJ)
GO TO 500

FRECKET DISTRIBUTION

XRAN(J)=BE(J),(-LOG(CDFNOR(X(J))))**(-I-EO/AL(J))

CONTINUE

PERFORNANCE FUNCTION

CALL HARBIFN(XRAN,K,ALPHA,BETA, Z)

FIND TOTAL NUWBER OF G < 0

IF (Z.LT.O.EO)
CONTINUE

B2=I_TA* ,2

NUH=NUH+I

CHIX IS PROBABILITY IN BETA SPHERE

CHIX=I. EO-CHI (B2, XNU)

PF IS PROBABILITY OF FAILURE
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920
781

PRINT INPUT DATA

PFZ=REAL (NUM)/REAL (N)

PF=CIIIX.PFZ

XPF=-XINY (PF)
CLT=XINV (.975) .SQRT (PFZ. (I.EO-PFZ)/DBLE (N))/PFZ

CL=PF. (I.EO-CLT)

IF (CL.LT. O.EO) CL--O. EO
UL=PF* (I.EO+CLT) i
CALL SECOND (TX2)
DTT=TX2-_I

WRITE(6,' (II/,gX,A) ') _S
WRITE(6,910)
FORKAT (///, 30X,' DESIGN VARIABLES',//, 9X, 'VARIABLE', 7X,
' DISTRIBUTION' ,9X, 'KEAN/KEDIAN',8X,' STD/COV')

DO 781 I=I,K

IF (DIST (I).EQ. 4.) THEN

XMEAN (I) =X_EAN (I)/SQRT (1. EO+XCOV (I) *.2)
STD (I) =XCOV (I)

END IF

WRITE (6,920) YNAKE (I),VDIST (I),XKEAN (I),STD (I)

FORK&T (/,IOX, AS, 12X, AT, IOX, IPEI2.4,7:(, IPEI2.4)
CONTINUE

WRITE(6, '
WRITE(6, '

WRITE (6, '

WRITE (6,
WRIt(6,
WRITE(6,

WRITE (6,

WRITE(6,

WRITE (6,
WRITE(6
WRITE(6
WRITE (6

WRITE(8
_aITE(8
_ITE (6
STOP

END

(/,SX,
(8x,A,
(SX,A,
(8x,A,
(8x,A,
(sx,A,
(8X,A,

(SX,A,
(SX,A
(8X,A

(8X,A

(8X,A

(8X,A
(SX,A
(/,sx

A,/) ') ' (NOTE: THE MEDIAN AND COY USED FOR
F7.3,/)') ' BETA (SPHERE) = ',BETA

I3,/)') ' NU_ER OF VARIABLES = ',K
F7.4,/)') ' AREA RATIO, AR = ',AR

F8.4,/)') ' ALPHA = ',ALPHA

15,/)') ' NIB_ER OF SAMPLES = ',N

15,/)') ' TOTAL NUMBER OF g < 0 = ',NUM

15,/) ') ' TOTAL NIh_R OF POINTS SAMPLED = ',NR
IPEI3.5,/) ') ' PROBABILITY IN BETA SPHERE = ',

IPEI3.5,/) ') ' PROBABILITY OF FAILURE = ',PF

F9.5,/)') ' BETA = ', XPF
/) ') ' 95 _ CONFIDENCE INTERVAL ON PF'

IPEIS.5,/)') ' LOWER = ', CL

IPEI3.5,/)') ' UPPER = ', UL

A,FS.2,/)') ' CPU EXECUTION TI]_ (SEC.)

LN) '

CHiX

= ',DTT

CHI-SQUARED DISTRIBUTION FUNCTION

REAL FUNCTION CIII(X,XNU)

I]_PLICIT REAL (A-H,O-Z)

REAL* 16 DIV, RX
SUMI=I .EO
R=I .EO
RX=X
DIV=XNU+2 .EO*R

CONTINUE

SUM2=RX/DI-V
SUMI=SU_I +SIP/2

IF(Sb%_.LE.I.E-IO) GO TO 2
RX=RX*X

R=R+I .EO

DIV=DIV, (XNU+2. EO*R)
GO TO 1
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CONTINUE

X2=. 5EO,X

XNU2=. 5EO *]GNU
CHI=X2,,XNU2,EXP (-X2)/GAMMA (XNU2) ,SUM1

RETURN
END

GAKKL FUNCTION

REAL FUNCTION G_(Y1)

IMPLICIT REAL (A-H,O-Z)
CO_ON /TWO/ PI,PI2,SPI2
X=YI+I .EO
Z=X

IF(X.GE.6.0EO)GO TO 456
N=INT (X) :'

Z= (6.OEO) -N+X

Y=I .EO/Z**2
ALG= (Z-. 5EO) ,LOG (Z) *. 5EO,LOG (PI2) -
Z- (1 .EO/(12. EO,Z) ) • ( ( (Y/140 .EO-1. EO/lO5 .EO) ,Y+

I.EO/30. EO) ,Y-1 .EO)

IF (X.GE. 6.EO) GO TO 457
ITB=6-N

DO 3 J=I,1YE

A=X+ J- i.EO

ALG=ALG-LOG (A)

CONTINUE

GAma=FXP (ALG)
RETURN

END

STANDARD NORKAL CDF

REAL FUNCTION CDFNOR(Z)

THIS FUNCTION COMPUTES THE NORKAL CDF.

II_PLICIT REAL (A-H,O-Z)

COMMON /TWO/ PI,PI2,SPI2
DATA A/O. 31938153E0/,B/-O. 356563782E0/, C/l. 781477937E0/,

D/-1. 821255978E0/, E/1.330274429E0/
EZ=- (Z**2) *. 5EO
CDFNOR--O.OEO

IF (EZ.LE.-200.0EO) GO TO 1
ZX=SPI2,EXP (EZ)

IF(ABS(Z).GT.S.EO) GO TO 2
T=I .EO/(1 .EO+ (0.2316419EO,ABS (Z)) )
CDFNOR=ZX,T* (A+T, (B+T, (C+T, (D+T,E)) ) )
GO TO I

Z2=I.EO/(Z,Z)
CDFNOR=ZX, (1. EO-Z2, (1 .EO-3. EO, Z2, (1 .EO-5 .EO, Z2) ) )/ABS (Z)

IF (Z. GT. O.OEO) CDFNOR=I. OEO-CDFNOR
RETURN

END

INVERSE NORNAL CDF

REAL FUNCTION XINV (Z)

IMPLICIT REAL (A-H, 0-Z)

F (X,PI) =PI-CDFNOR (X)
Y=Z 391



i0

C
C
C

7

10

IF(Z.CT.O.SEO)Y=I.EO-Z
IF (Z.EQ. I.EO) STOP
C0=-2.51551ZE0
Cl=O. 802853E0

C2=0.010328E0

Dl=l.432788EO

D2=O. 189269E0

D3--O.O01S08EO

T= (-2. EO,LOG (Y)) **. SEO
DNU_=CO+T, (Cl+T,C2)

DNO_=I. OEO+T, (DI +T, (D2+T,D3))
X=T- (DNUM/DNOM)

IF (Z.LT.O. 5EO) X=-X

XI=X
FI=F(XI,Z)
X2=XI +.O01EO

F2=F (]62,Z)
XX=X2

CONTINUE

IF(ABS(XX-XI) .GE.I.E-IO) THEN

XX=X2-F2, (X2-XI) / (F2-FI)
XI=X2

X2=XX
FI=F2

F2=F (XX, Z)
GO TO I0

END IF

XINY=XX

END

FIND PARAKETERS IN WEIBULL, OR FRECKET

SUBROUTINE SECTI (CO¥,ISlGN,ALPEA)

IMPLICIT REAL (A-H,O-Z)

COKMON /TWO/ PI,PI2,SPI2

ISIGN = i; WEIBULL DIST.

= 2; FRECHET DIST.

F (X, COY) =- (1. EO+COV**2) ,GAK_ (X) **2+GA}/_ (2. ,X)
IF(ISIGN.EQ. I) XI=COV** (1.08)

IF (ISIGN.EQ. 2) XI=COV,, (. 677)/2.33
IF (ISIGN. EQ. 2. AND. XI. GT.. 49E0) XI=. 48999999

IF (ISIGN. EQ. I) FI=F (XI,COY)
IF (ISIGN.EQ. 2) FI=F (-XI, COY)

IF(ABS(FI).LE.I.E-IO) GO TO 1
X2=XI +.OlEO

IF (ISIGN.EQ. i) F2=F (X2,COV)

IF (ISIGN.EQ. 2) F2=F (-X2, COV)
XX=X2
CONTINUE

IF(ABS(XX-XI) .GE.I.E-9) THEN

XX=X2-F2, (X2-XI) / (F2-FI)
XI=X2

X2=XX

FI=F2

IF (ISIGN.EQ. I) F2=F (XX,COY)

IF (ISIGN.EQ. 2) F2=F (-XX, COY)
GO TO i0

END IF

XI=XX
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ALPHA=I. EO/XI

RETURN
END

PARAI_TERS CALCULATION (ALPHA, AND BETA)

SUBROUTINE gel (_, XDEV, ALPHA, BETA)

II_PLICIT REAL (A-H, O-Z)

CO¥=XDEV_
CALL SECT1 (COV, 1,ALPHA)

kLi=i .EO/_LPHA
BETA=XKBAN/GAKKA (AL I)

RETURN :,
END

pA2.AKETERS CALCULATION (ALPHA, AND BETA)

SUBROUTINE FRE (XKEAN, XDEV, ALPHA, BETA)

II£PLICIT REAL (A-H, O-Z)

C0V=XDEV 
CALL SECTI (COV, 2,ALPHA)

ALI=I .FAD/ALPHA

RETURN
END

PARAKETERS CALCULATION (ALPHA, AND BETA)

SUBROUTINE EVD (_, STD, ALPHA,BETA,PI)

II_PLICIT REAL (A-H,O-Z)

ALPHA=PI/(STD,SQRT (5 .EO))

BETA=XKEAN-. 57721586490153/ALPHA

RETURN

END

FIND THE ALPHA FOR KAX. AREA RATIO

SUBROUTINE HATEST (AL_IIN,AL_A_X,BETA, K,AL_I, ALK' &LPA,._I)

I]_PLICIT REAL (A-H,O-Z)

DIKENSION C(21),AR(21)

20 SEGKENTS BETWEEN WIN. ALPHA AND }A_X. ALPL_

DAL= (ALh6&X-ALKIN) *. OSFAD

BET3=BETA+3. EO

XK2=DBLE (K),.SEO

DO 1 IX=I,21
ALPHA=ALKIN+DBLE (IX-I) .DAL

AL2=ALPIIA* • 5EO
UI=EXP (-BET3..2/ALPHA)

U2=EXP (-BETA, • 2/ALPHA)

DU= (U2-UI) ,. 05EO
UI2=UI+DU* •5EO

Gmax--O.EO

SU_=O. EO

DO 2 J=1,20

U=UI2+ (J-l) *DU

EQ. 22 IN HARBITZ'S PAPER
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G(J) =(-LOG(U)) ** (XK2-I .EO).U. *(AL2-i. EO)
IF (G (J).GE. Gmax) Gmax=G (J)
SU_=SUM+G (J)
CONTINUE

AR(Ix)=suM/(20.EO,Gm )
CONTINUE

FIND MAX. AR

APJAKX=AR (I)

DO 10 J=2,21

IF (ARKAX.LE.AR (J)) TEEN

 P :AR(J)
IJ=J

END IF .

I0 CONTINUE

ALKI=ALKIN+DBLE ((IJ-2) ),DAL

ALPA=ALKIN+DBLE ((IJ-i)).DAL

ALKA=ALKIN+DBLE (IJ)*DAL

RETURN

END

SUBROUTINE XFPI (ZX,N,XRZ,EPS,XKFAN,DIST,XDE¥,XCO¥, AL,BE, ZBET, ZO)

IKPLICIT RF_AL (A-H,O-Z)

DIMENSION AL (20),BE (20), ZX (20),X (20), DISTI (20),XRZ (20)

DIKENSION XCOV (20),TXKFAN (20), TXCOV (20), XNKEAN (20),XNDEY (20)

DIKENSION DIST (20), DX (20),XR (20),XKEAN (20), XI)EV(20),TEKPXR (20)

DI-_ENSION CI (20), AI (20), SF (20), STOREX (20), C(20,2), FORM (20)

COkOXON /OP 1/ DISTI, DX, XR, X]IKEA_N,XNI)EV,el, A_I,SP, C,FORM, If, ZXO, XRI

COKMON /TWO/ PI,PI2,SPI2
READ h_gBER OF VARIABLES(N), LIMIT STATE DESCRIPTION ('A' FORKAT).

.2

C READ NAKE, KEAN (MEDIAN FOR LOGNORKAL VARIABLES) ,COEFF. OF VARIATION,

C AND DISTRIBUTION TYPE (DEFINED IN SUB. CDFPDF) OF EACH VARIABLE.

EXO=ZO

DO 15 I=I,N

DISTI (I)=DIST (I)

SF(I)=I.
15 CONTINUE

KK=O

II=O

CO=O.

AI (1)--0.
C READ ZO VALUE IN TEE LIMIT STATE(DEFINED IN SUB. GFUNC) : G (X)=Z (X)-ZO

C WRITE (5,121)
C COKPUTE R-F BETA AND TEE DESIGN POINT.----II--O LOOP.

CALL FIT (EPS, ZX, AL, HE, N,XKFA_N,XI)EV,ZBET, KK, II)
RETURN

END

SUBROUTINE FIT (EPS, ZX, AL,BE, N,XKEAN, XDE¥; BETA, KK, LL)

C THIS SUB. USES TEE R-F ALGORITKM TO FIND TEE R-F SAFETY INDEX. IT ALSO
C CONTROLS THE PROCESS OF CONSTRUCTING TKREE PARAKETER EQUIV. NORKALS.

IMPLICIT REAL (A-H,O-Z)
DTWF,NSION DIST (20), DX (20),XR (20),XKEAB (20), XI)EV(20), ZX (20)

DIKENSION CI (20), kI (20), SF (20), X]iKEAN (20), XNDEV (20), EE (20)
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DINENSION C(20,2), FOR_ (20),AL (i'O),BE (20)

CO}_NON /OPI/ DIST, DX,XR,X]fgEAN, XINDEV,CI,AI, SF, C,FOR_, II, ZO,XRI

COK_ON /TWO/ PI,PI2,SPI2

II=LL

IF(LL.hE.O) GO TO 40
_PUTB _ININI_ DISTANCE (SAFETY INDEX) USING SUBROUTINE OPTS.

_ET INITIAL DESIGN POINT SEARCH VALUES (XR(I)).**

_ET CONVERGENCE LIKITS (EE(I)) AND STEP SIZE }_ULTIPLIER (DD).**

DO 30 I=I,N

XR(I)--O.O

EE (I)--0.0001

XDO_EAN(I):X_EAN (I)

,XNDEV (I)=XDEV (I)
DD=5000.

CULATE HASOFER-LIND SAFETY INDEX - FIRST ESTIMATION.

CALL OPT_ (ZX,AL,BE, N,BETA, IOPT, EE, DD,XR, I.OEO)
LL--O -- RACKVCITZ-FIESSLER WETHOD. ; IF LL=I -- LEAST-SQUARES NETHOD.

KK--O

KK--KK÷I

DO I0 J=I,N
R-F TRANSFORNATION (LL.EQ.O)

IF(LL.hE.O) GO TO 50
IF(DIST(J).NE.2.) GO TO 99

(J)=nmAN (J)
XNDEV (J)=XDEV (J)
GO TO I0

CALL CDFPDF (ZX,AL (J),BE (J),D!ST (J),DX (J),XEEAN (J),XDE¥ (J),

O,CDF,PDF)

U=XINV (CDF)
STAR.W=(- (U**2) *.5)

IF (STARW. LE. -200. ) STARW=-200.

XNDEV (J)=SPI2,EXP (STARW)/PDF

_2fgEAN(J)=DX (J)-U,XNDEV (J)
GO TO I0

LEAST SQUARES KETEOD (LL.NE.O)
CONTINUE

CONTINUE

IF(LL.NE.O) GO TO iii
ZBETA=BETA

CALL OPT_ (ZX,AL, BE, N,BETA, IOPT, EE, DD,)[R,i.OEO)
.T KAX. NO. OF ITERATIONS FOR DESIGN POINT SEARCH**

I_(KK.EQ. 100) RETURN
T STOP CRITERIAS FOR THE CALCULATION OF BETA**

IF(BETA.LT.4.0) GO TO 20
ERRPER= i00. •ABS (BETA- ZBETA) /ZBETA

IF (ERRPER. LE. O. i) RETURN
_0 TO 77

IF (ABS (BETA-ZBETA). LE. EPS) RETURN
]0 TO 77
{ETURN

_ND

;UBROUTINE KINBT (ZX,AL, BE, N,BETA)

SUBROUTINE COKPUTES THE KINLqlg/ DISTANCE.

IKPLICIT REAL (A-H,O-Z)

,INENSION DIST (20),X (20), XR (20), XNEAN (20),XI)EV(20), ZX (20)

.I._NSION CI (20),AI (20), SF (20), C (20,2),FOR_ (20), AL (20), BE (20)
O),t-_fON/OPI/ DIST,X,XR,X_FAN,XDEV,CI,AI,SF,C,FOR_,II,ZO,XRI
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SU_---O.0

C FOR II---0(R-F) LOOP ONLY.
C COMPUTE BASIC VALUES FROM TEE REDUCED YALI/ES.

DO i I=2,N

X (I)=XDEV (I) .XR (I-i) +_ (I)

I IF(X(1).LE. (O.O01,XDEY(I)).AND.DIST(I).NE.2.) X(1)--O.OO1,XDEV(I)

c CO_PUTEx(1)vALue.
CALL LSFFPI (N,X, ZX, ZO)

C SET LOWER LIKIT OF THE DESIGN POIh_ VALUE OF X(M)

_RI=(x(z)-nm_ (I))/XDEV(Z)
DO 33 I=I,N

IF (XR (I).GT. 27. ) XR (I)=27.

IF (XR(I) .LT.-27.) XR(I)=-27.
33 CONTINUE

M=N-I

DO 3 I=I,M

3 SU_=SU_+XR(I) **2
SU_=SUM+XR1 * *2 ,..

BETA=SQRT (SUM)
RETURN

END

SUBROUTINE CDFPDF (ZX,ALPKA,BETA, DIST,X, XKEAN, XDEY, ICDF, CDF ,PDF)
C THIS SUBROUTINE CALCULATES TKE CDF AND PDF OF THE FOLLOWING

C DISTRIBUTIONS : I.=WEIBULL, 2.=NORMAL, 3 .=EYD, 4.=LOGNORKAL., S.=FRECKET

C FOR ADDITIONAL DISTRIBUTIONS, TEE CDF AND TEE PDF MUST BE EXPRESSED

C IN TERMS OF THE ___N(X]g_d_) AND THE STANDARD DEVIATION(XDEV).

IKPLICIT REAL (A-H,O-Z)

D]-_ENSION ZX (20)

CO_ON /TWO/ PI,PI2,SPI2
C SET LOWER LIKIT FOR NON-NORKAL VARIABLES.

XL=O. 00001 *XDEY

IF (DIST.HE. 2. .AND. X.LE.XL) X=XL

GO TO (1,2,3,4,5),INT(DIST+.IEO)

1 IF(ABS(X).LE.I.E-ZO) TEEN
CDF---O.EO

PDF--O.EO

GO TO 10

END IF

RB=X/BETA
EW=RB* *ALPHA

IF (EW.GT. 200. ) EW=200.

EXPWEI=EXP (-E_O
CDF=I. OEO-EXPWEI

IF(ICDF.EQ.I) GO TO I0

PDF= (ALPEA/BETA) •(EW/_B) .EXP_£I
GO TO 10

2 Z= (x-nm_)/XDEV

CDF=CDFNO R (Z)

IF(ICDF.EQ.I) GO TO i0

PDF=SPI2,EXP (-Z**2,. 5)/XDEY
GO TO 10

3 EI=ALPKA, (X-BETA)

IF (El.GT. 200. ) El=200.

YY=FZP(-m)
IF(YY.GT.2oo.) _=2oo.
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CDF=EXP (-YY)

IF(ICDF.EQ.I) GO TO I0
EY=E i÷YY

IF (EY.GT. 200. ) EY=200.
PDF=ALPHA,EXP (-EY)

GO TO I0

¢X21= (XDEV/X3LEAN) **2+1.
YKEAN=LOG (XKEAN) -LOG (SQRT (CX21))

YDEY=SQRT (LOG (CX21))

Z= (LOG (X)-YKEAN)/YDEV

CDF=CDFNOR (Z)

IF (ICDF.EQ. I) GO TO i0

EZ=-(Z**2),.5
IF (EZ.LE. -200. ) EZ=-200.

PDF=SPI2,EXP (EZ)/ (YDEV,X)

GO TO i0

IF(ABS(X) .LE.I.E-IO) TEEN
CDF=O. EO

PDF=O. EO
GO TO i0

END IF

TEn,P= (BETA/X) **ALPHA
CDF=EXP (-TEKP)

IF(IODF.EQ.I) GO TO I0
PDF=CDF,TEKP*ALPHA/X

RETURN

END

SUBROUTINE OPTS{(ZX,AL, BE, NP, EF, NFCC, E,ESCALE, X, OPT_{IZ)

; IS TEE OPTI}_IZATION ROUTINE FOR FINDING THE R-F SAFETY INDEX,

TEE THREE PARAKETERS OF THE EQUIVALENT NORKAL CDF.

DIKENSION OF W = NO. OF VARIABLES,(NO. OF VARIABLES , 3)

IKPLICIT REAL (A-H,O-Z)

DI_NSION X (20), W(460), E (20), ZX (20), AL (20), BE (20)
DIKENSION DIST (20), DX (20),XR (20),XKEAN (20), XDEV (20), CI (20), AI (20),
SF (20) ,BB (81), CDFNON(81), WEIGT (81), SQRWGT(81), C (20,2), FOR_ (20)
CO_ON /OPl/ DIST,DX,XR,_,XDEV,CI,AI,SF,C,FOPA_,II,ZO,XRI
CO_ON /OP2/ BB, CDFNON, WEIGT, SQRWGT, DP, NA, N'B, PT, SCALE
R INTERKEDIATE RESULTS SET IPRINT TO k LOWER INTEGER.**

IPRINT=4

N=NP-I

DDKAG--O•I*ESCALE

_CER--O.05/ESCALE

IJ=N. (N+1)
IJJ=JJ+N

C=N+l
_FCC=I

[ND=I

LNN=I

_O 4 I=I,N

r(I) :ESCALE
'0 4 J=I,N

'(K)=O.
F(I-J)4,3,4

(K) =ABS (E (I))
=K+I

TERC=I
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